簡易檢索 / 詳目顯示

研究生: 許坤章
Hsu, Kun-Chang
論文名稱: I. 中孔洞二氧化矽薄膜的低溫模板分子移除法與結構性質研究. II. 鈀金屬薄膜與奈米粒子的製備及儲氫性質研究
I. Structural Characterization and Moderate Template Removal of the Mesoporous Silica Films. II. Synthesis and Characterization of Pd Metal Membrane and Nanoparticles
指導教授: 趙桂蓉
Chao, Kuei-Jung
口試委員:
學位類別: 博士
Doctor
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2009
畢業學年度: 97
語文別: 中文
論文頁數: 163
中文關鍵詞: 中孔洞二氧化矽薄膜模板分子移除法X光平面反射率鈀奈米金屬粒子儲氫材料
外文關鍵詞: Mesoporous silica thin film, template removal, XRR, Pd nanoparticles, Hydrogen storage
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文分為兩個部分,第一部份的內容中,我們以中性的界面活性劑Brij56及三區塊共聚高分子P123作為模板分子,製備超薄(厚度~ 200 nm)且具有規則排列結構的兩種中孔洞二氧化矽薄膜,並藉由低溫的超臨界二氧化碳萃取法(SCF-CO2, at 60 oC)或紫外光-臭氧照光法(UV-O3, 25 oC)來移除薄膜中的有機模板分子,以降低一般傳統高溫鍛燒(400 ~600 oC)方式,造成的薄膜結構收縮、破壞及基材耐熱性不佳等問題。實驗結果發現,經超臨界二氧化碳萃取法處理後的薄膜,具有較佳的結構規則度;而以紫外光-臭氧照光處理後的薄膜,則具有較高的薄膜孔隙度及較低的光學折射率(n = 1.32)。
    第二部份的內容中,首先我們分別以界面活性劑穩定分散及中孔洞二氧化矽為支撐材(Pd/CTAB/M41 & M48)製備Pd金屬奈米粒子,並藉由XRD及TEM的量測,探討Pd金屬奈米粒子的粒徑熱穩定性。隨後,比較不同粒徑大小的Pd金屬奈米粒子(3.0 nm Pd/CTAB/M41, 5.0 nm Pd/CTAB/M48及11 & 22 nm Pd/CTAB)與Pd金屬薄膜(10 μm)的氫氣吸附性質。在此部分的鑑定分析中,我們以同步輻射作為光源進行in-suit XRD的量測,用來觀察不同粒徑大小的Pd奈米金屬粒子,在氫氣吸附/脫附過程所造成的晶格膨潤與氫氣吸附量估算值的影響,及其儲氫能力及氫氣儲存/釋放的操作溫度影響。另外,再以in-suit XAS的量測來觀察不同粒徑大小的Pd金屬粒子,吸附氫氣後所產生的Pd-Pd鍵長改變與氫氣吸附性質影響。


    The first section of this thesis is preparation of supported Brij56- or P123-SiO2 composite mesoporous silica thin films with thickness ~ 200 nm, which were dip-coated on Si-wafer, glass or Au/Cr/Si substrates. The template of mesoporous silica films were removed by supercritical fluid extraction (MeOH/SCF-CO2) at 60 oC, UV-O3 at 25 oC or thermal calcination at 400-500 oC. The SCF-CO2 modified with MeOH has been employed to remove template almost completely from Brij-56 and P123-SiO2 composite films on Si-wafer. SCF results the mesoporous silica film of higher degree of ordering and larger size of mesoporous with single mesophase than calcination. Furthermore, the supported P123-SiO2 composite films of high porosity with large surface area and pore volume, low average density and thickness were produced through UV-O3 treatment as characterized by X-ray reflectivity (XRR) and Kr adsorption, and with low refractive index of 1.32.
    In the second section, we report the preparation of surfactant-stabilized (22.0, 14.6 and 11.6 nm Pd/CTAB) and surfactant/mesoporous silica composites (5.0 Pd/CTAB/M48 and 3.5 nm Pd/CTAB/M41) Pd nanoparticles by using colloid and one-pot synthesis method. After that, we study the thermal-stability of Pd nanoparticles by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the hydrogen adsorption/desorption properties of Pd nanoparticles and membrane were discussed by using in-suit XRD and X-ray absorption spectroscopy (XAS) during the hydrogen unloading or loading condition.

    第一部份 中孔洞二氧化矽薄膜的低溫模板分子移除法與結構性質研究 1 第一章 緒論 2 1.1 中孔洞二氧化矽材料 2 1.2 中孔洞二氧化矽薄膜 5 1.3 有機模板分子的移除 8 1.3.1 高溫鍛燒法 (Thermal calcination) 8 1.3.2 溶劑萃取法 (Solvent extraction) 8 1.3.3 超臨界流體萃取法 (Supercritical fluid extraction) 9 1.3.4 紫外光-臭氧(UV-O3)照光移除法 10 1.4 X光平面反射率鑑定(X-ray specular reflectivity, XRR) 13 1.5 本研究的目的及方法 17 第二章 實驗部份 19 2.1 實驗藥品 19 2.2 基材的前處理 20 2.2.1 Si (100)矽晶片的清洗 20 2.2.2 玻璃基材的清洗 20 2.3 中孔洞二氧化矽薄膜的製備 22 2.4 模板分子移除法 24 2.4.1 高溫鍛燒法 (thermal calcination) 24 2.4.2超臨界二氧化碳流體萃取法 (SCF-CO2 extraction) 25 2.4.3 紫外光-臭氧移除法 (UV-O3) 26 2.5 中孔洞二氧化矽薄膜疏水性改質 27 2.6 鑑定分析 28 2.6.1 X光繞射量測 (X-ray diffraction, XRD) 28 2.6.1.1 θ-2θ scan 與α-β scan XRD 28 2.6.1.2 二維低掠角X光繞射 (2D-GIXRD) 30 2.6.2 X光平面反射率(XRR) 31 2.6.3 傅立葉轉換紅外光光譜儀(FT-IR spectroscopy) 32 2.6.3.1 穿透式FT-IR 32 2.6.3.2 75 o低掠角反射式FT-IR 32 2.6.4氪氣等溫物理吸附(physical adsorption of krypton) 33 2.6.5 薄膜測厚儀 (N & K analyzer) 34 第三章 結果與討論 35 3.1 超臨界二氧化碳萃取模板分子效率與薄膜結構性質鑑定 35 3.1.1 超臨界二氧化碳與混合溶劑的萃取效果 35 3.1.2 超臨界二氧化碳與甲醇混合溶劑的最佳化體積流量比 41 3.1.3高溫鍛燒與超臨界二氧化碳萃取模板分子後的薄膜結構性質 43 3.1.3.1 X光繞射量測: θ-2θ scan與FT-IR量測 43 3.1.3.2 X光繞射量測: α-β scan 45 3.1.3.3氪氣等溫物理吸附 48 3.1.3.4 X-光平面反射率 50 3.2紫外光-臭氧照光移除模板分子的與結構性質鑑定 54 3.2.1 模板分子的移除效率: GI-FTIR量測分析 54 3.2.2 中孔洞二氧化矽薄膜結構性質分析 56 3.2.2.1 X光繞射量測: 2D-GIXRD、θ-2θ scan與α-β scan 56 3.2.2.2 氪氣等溫吸附 59 3.2.2.3 X光平面反射率 61 3.2.3 基材種類與薄膜結構性質的影響 66 第四章 結論 69 第五章 參考文獻 71 第二部份 鈀金屬薄膜與奈米粒子的製備及儲氫性質研究 74 第一章 緒論 75 1.1 氫能 75 1.2儲氫材料 77 1.3 Pd金屬塊材的氫氣吸附 79 1.3.1 Pd金屬氫化物的熱力學性質 79 1.3.2 Pd金屬薄膜的氫氣純化作用與氫脆現象 82 1.4 Pd奈米金屬粒子的儲氫性質 84 1.4.1 Pd奈米金屬氫化物的熱力學性質 84 1.4.2 儲氫容量與晶格結構變化之關係 89 1.4.3 Pd吸附氫氣後Pd-Pd鍵長及結構的變化 93 1.4.4 Pd金屬奈米粒子的熱穩定性 96 1.5 本研究的目的及方法 98 第二章 實驗部份 99 2.1 實驗藥品 99 2.2 Pd金屬薄膜與奈米粒子之製備 100 2.2.1 Pd/CTAB奈米鈀粒子之製備 100 2.2.2無電鍍Pd金屬薄膜(~ 10 μm) 103 2.2.3 Pd/CTAB/M41及Pd/CTAB/M48奈米鈀粒子之製備 104 2.2.3.1 Pd/CTAB/M41 104 2.2.3.2 Pd/CTAB/M48 105 2.3 鑑定方法 109 2.3.1粉末X光繞射 (PXRD) 109 2.3.2 X光吸收光譜分析 (EXAFS) 111 2.3.3高解析度穿透式電子顯微鏡 (HRTEM) 114 第三章 結果與討論 115 3.1 Pd金屬薄膜的晶格結構參數 115 3.2 Pd金屬奈米粒子的熱穩定性 117 3.2.1 Pd/CTAB金屬奈米粒子的粒徑熱穩定性 117 3.2.2 Pd/CTAB/M41金屬奈米粒子的粒徑熱穩定性 120 3.3 Pd金屬薄膜與奈米粒子的氫氣吸附容量 124 3.3.1在室溫及不同氫氣分壓下Pd金屬薄膜的氫氣吸附容 124 3.3.2 在室溫及固定氫氣分壓(0.1 atm )環境中,Pd金屬薄膜與奈米粒子的氫氣吸附容量 126 3.3.3 Pd金屬薄膜與奈米粒子的氫氣吸附量與Pd-Pd鍵長 130 3.4 Pd金屬薄膜與奈米粒子的氫氣脫附 133 3.4.1 Pd金屬氫化物的氫氣吸附及脫附機制 133 3.4.2 Pd金屬薄膜與奈米粒子的粒徑大小對氫氣脫附溫度影響 140 第四章 結論 143 第五章 參考文獻 144 附錄 A 148

    第一部份 中孔洞二氧化矽薄膜的低溫模板分子移除法與結構性質研究
    [1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 359 (1992) 710.
    [2] K. S. W. Sing, D. H. Everett, R. H. Haul, W. L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewaka, Pure Appl. Chem. 57 (1985) 603.
    [3] O. Terasaki, Mesoporous crystals and related nano-structured
    materials (2004) 69.
    [4] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, J. Am. Chem. Soc. 114 (1992) 10834.
    [5] H. G. Karge, J. Weitkamp, “Molecular sieves:vol. 1:Science and technology”, Springer (1998).
    [6] Makoto Ogawa, Naoshi Masukawa, Microporous and Mesoporous
    Materials , 38 (2000) 35.
    [7] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi,
    Nature, 429 (2004) 281.
    [8] D. Zhao, J. Sun, Q. Li, G. D. Stucky, Chem. Mater. 12 (2000) 275.
    [9] C. Yu, J. Fan, B. Tian, D. Zhao, Chem. Mater. 16 (2004) 889-898
    [10] P. Falcaro, D. Grosso, H. Amenitsch, P. Innocenzi, J. Phys. Chem. B 108 (2004) 10942.
    [11] C. M. Yang, A. T. Cho, F. M. Pan, T. G. Tsai, K. J. Chao, Adv. Mater. 13 (2001) 1099.
    [12] A. T. Cho, J. M. Shieh, J. Shieh, Y. F. Lai, B. T. Dai, F. M. Pan, H. C. Kuo, Y. C. Lin, K. J. Chao, P. H. Liu, Electrochemical and Solid-State Letters, 8 (2005) G143-G146.
    [13] G. Wirnsberger, B. J. Scott, G. D. Stucky, Chem. Commun. (2001) 119.
    [14] H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, G. A. Ozin, Nature 379 (1996) 703.
    [15] H. Yang, N. Coombs, I. Sokolov, G. A. Ozin, J. Mater. Chem. 7 (1997) 1285.
    [16] M. Ogawa, J. Am. Chem. Soc. 116 (1994) 7941.
    [17] E. I. Ko, ‘Sol-gel Process’, Handbook of Heterogeneous Catalysis ed. By Ertl, G., Knozinger, H., Weitkamp, J. VCH 1 (1997) 86.
    [18] C. J. Brinker, Yunfeng Lu, Alan Sellinger, Hongyou Fan,
    Adv. Mater. 11 (1999) 579.
    [19] N. Nishiyama, S. Tanaka, Y. Egashira, Y. Oku, K. Ueyama, Chem. Mater. 15 (2003) 1006.
    [20] S. Tanaka, N. Nishiyama, Y. Oku, Y. Egashira, K. Ueyama, J. Am. Chem. Soc. 126 (2004) 4854.
    [21] Y. Lu, B. F. McCaughey, D. Wang, J. E. Hampsey, N. Doke, Z. Yang, C. J. Brinker, Adv. Mater. 15 (2003) 1733.
    [22] P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, B. F. Chmelka, Chem. Mater. 14 (2002) 3284.
    [23] X. F. Zhou, C. Z. Yu, J. W. Tang, X. X. Yan, D. Y. Zhao, Microporous and Mesoporous Mater. 79 (2005) 283.
    [24] S. Yua, T. K.S. Wonga, X. Hub, T. K. Goha, Thin Solid Films 462-463 (2004) 306.
    [25] T. Yamada, K. Asai , A. Endo, H. S. Zhou, I . Honma, Journal of
    Materials Science Letters 19 (2000) 2167.
    [26] F. Cagnol, D. Grosso, Galo J. A. A. Soler-Illia, E. L. Crepaldi, F.
    Babonneau, H. Amenitschb, C. Sanchez, J. Mater. Chem., 13 (2003) 61.
    [27] T. Cho, F. M. Pan, K. J. Chao, P. H. Liu, and J. Y. Chen, Thin Solid Films, 483 (2005) 283.
    [28] F. Kleitz, W. Schmidt, F. Schüth, Microporous and Mesoporous
    Materials 44-45 (2001) 95.
    [29] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am.
    Chem. Soc. 120 (1998) 6024.
    [30] F. Kleitz, W. Schmidt, F. Schüth, Microporous and Mesoporous
    Materials 65 (2003) 1.
    [31] S. Kawi, M. W. Lai, Chem. Commun., (1998) 1407.
    [32] R.V. Grieken, G.Calleja, G. D. Stucky, J. A. Melero, R. A. Garcý´, J. Iglesias, Langmuir 19 (2003) 3966.
    [33] L. Huang, C. Poh, S. C. Ng, K. Hidajat and S. Kawi, Langmuir 21 (2005) 1171.
    [34] M. T. J. Keene, R. Denoyel, P. L. Llewellyn, Chem. Commun., (1998) 2203.
    [35] A. M. Dattelbaum, M. L. Amweg, J. D. Ruiz, L. E. Ecke, A. P.
    Shreve and A. N. Parikh, J. Phys. Chem. B 109 (2005) 14551.
    [36] J. Bolze, M. Ree, K. Char, Langmuir 17 (2001) 6683.
    [37] X. Li, T. K. S.Wong, Rusli, D. Yang, Diamond and Related
    Materials 12 (2003) 963.
    [38] http://www.rigakumsc.com/semi/about_tech.html
    [39] 黃國瑩,國立清華大學化學研究所碩士論文,2004 年。
    [40] K. J. Chao, P. H. Liu, K. Y. Hung, Comptes Rendus Chimie 8 (2005) 727.
    [41] P. H. Liu, K. J. Chao, X. J Guo, K. Y. Huang, Y. R. Lee, C.W. Cheng, M. S. Chiu, S. L. Chang, J. Appl. Crystallogr. 38 (2005) 211.
    [42] S. Dourdain, J.F. Bardeau, M. Colas, B. Smarsly, A. Mehdi, B.M. Ocko, A. Gibaud, Appl. Phys. Lett. 86 (2005) 113108.

    第二部份 鈀金屬薄膜與奈米粒子的製備及儲氫性質研究
    [1] T. Gramham, Phil. Trans. Roy. Soc. 156, (1866) 399.
    [2] A.C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature 386(1997) 377.
    [3] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, Science 300 (2003) 1127.
    [4] Y. Li, R. T. Yang, J. Phys. Chem. B. 110 (2006) 17175.
    [5] 柯賢文,科學發展2006年3月,399期,p. 68-75.
    [6] 林怡均,能源報導2006年2月,p. 8 -10.]。
    [7] A. Pundt, C. Sachs, M. Winter, M.T. Reetz, D. Fritsch, R. Kirchheim, J.Alloys Comp. 293-295 (1999) 480.
    [8] C. Nutzenadel, A. Zuttel, D. Chartouni1, G. Schmid, L. Schlapbach, Eur. Phys. J. D, 8 (2000) 245.
    [9] Y. Wang, J. Ren, K. Deng, L. Gui and Y. Tang, Chem. Mater., 12 (2000) 1622.
    [10] S. Horinouchi, Y. Yamanoi, T. Yonezawa, T Mouri, H. Nishihara, Langmuir 22 (2006) 1880.
    [11] T. Teranishi, M. Miyake, Chem. Mater., 10 (1998) 594.
    [12] Y. Li, E. Boone, M.A. El-Sayed, Langmuir 18 (2002) 4921.
    [13] R. Narayanan, M.A. El-Sayed, J. Phys. Chem. B 108 (2004) 8572.
    [14] M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 116 (1994) 7401.
    [15] C. L. Lee, C. C. Wan, Y. Y. Wang, Adv. Func. Mater. 11 (2001) 344.
    [16] B. Veisz, Z. Kiraly, Langmuir 19 (2003) 4817.
    [17] A. Fukuoka, H. Araki, Y. Sakamoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Inorg. Chim. Acta 350 (2003) 371.
    [18] L. C. Wang, C. Y. Huang, C. Y. Chang, W. C. Lin, K. J. Chao, Micro. Mesoporous Mater. 110 (2008) 451.
    [19] C. L. Lee, C. C. Wan, Y. Y. Wang, J. Electrochem. Soc. 150 (2003) 125.
    [20] A. Mastlir, J. Catalysis 194 (2000) 146.
    [21] D. A. T. Tanaka, M. A. L. Tanco, S. I. Niwa, Y. Wakui, F. Mizukami, T. Namba, T. M. Suzuki, J. Membr. Sci. 247 (2005) 21.
    [22] A. Sieverts. Z. Physik. Chem., 88 (1914) 451.
    [23] H. Frieske, E. Wicke, Ber. Bunsenges. Physik. Chem., 77 (1973) 48.
    [24] F. A. Lewis, The Palladium Hydrogen System, Academic Press, (1967).
    [25] A. L. Athayde, R. W. Baker, P. Nguyen, J. Membr. Sci. 1994, 94, 299.
    [26] J. Tong, L. Su, Y. Kashima, R. Shirai, H. Suda, Y. Matsumura, Ind. Eng. Chem. Res. 2006, 45, 648.
    [27] B. D. Morreale, M. V. Ciocco, B. H. Howard, R. P. Killmeyer, A. V. Cugini, R. M. Enick, J. Membr. Sci. 2004, 241, 219.
    [28] E. M. Wise, Palladium: recovery, properties, and uses, Academic Press Inc. (1968) 49.
    [29] A. Zuttel, Ch. Nutzenadel, G. Schmid, D. Chartouni, L. Schlapbach, J. Alloys Comp. 293-295 (1999) 472.
    [30] V. Srivastava, R. Balasubramaniam, Mater. Sci. Engine. A304-306 (2001) 897.
    [31] J. A. Eastman, L. J. Thompson, B. J. Kestel, J. Phys. Rev. B 48 (1993) 84.
    [32] M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C 112, (2008) 3294.
    [33] B. Baranowski, S. Majchrzak, T. B. Flanagan, J. Phys. F., 1 (1971) 258.
    [34] M. Suleiman, N.M. Jisrawi, O. Dankert, M. T. Reetz, C. Bahtz, R. Kirchheim, A. Pundt, J. Alloys and Comp. 356–357 (2003) 644.
    [35] A. Pundt, M. Suleiman, C. Bähtz, M. T. Reetz, R. Kirchheim, N. M. Jisrawi, Mater. Sci. Engin. B, 108 (2004) 19.
    [36] A. Pundt, M. Dornheim, M. Gurerdene, H. Teichler, H. Ehrenberg, M. T. Reetz, N. M. Jisrawi, Eur. Phys. J. D. 19 (2002) 333.
    [37]H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 130 (2008) 1818.
    [38] H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 130 (2008) 1828.
    [39] R. J. Davis, S. M. Landry, J. A. Horsley, M. Boudart, Phys. Rev. B, 39 (1989)10580.
    [40] J. A. McCaulley, J. Phys. Chem. 97 (1993) 10372.
    [41] A. Rose, S. Maniguet, R. J. Mathew, C. Slater, J. Yao, A. E. Russell, Phys. Chem. Chem. Phys., 5 (2003) 3220.
    [42] H. Song, R.M. Rioux, J.D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P.D. Yang, G.A. Somorjia, J. Am. Chem. Soc. 128 (2006) 3027.
    [43] Z. Konya, V. F. Puntes, I. Kiricsi, J. Zhu, P. Alivisatos, G.A. Somorjai, Catal. Lett. 81 (2002) 137.
    [44] F. Charles, The hydrolysis of Cations, 1986, p.266.
    [45] 林威志,清華大學化學所碩士論文, 2006.
    [46] B. S. Berry, W. C. Pritchet, Phys. Rev. B 24 (1981) 2299.
    [47] C. Zener, J Appl. Phys. 22 (1951) 372.
    [48] S. Y. Huang, C. D. Huang, B. T. Chang, C. T. Yeh, J. Phys. Chem. B, 110 (2006) 21783.
    [49] C. W. Chou, S. J. Chu, H. J. Chiang, C. Y. Huang, C. J. Lee, S. R. Sheen, T. P. Perng, C. T. Yeh, J. Phys. Chem. B, 105 (2001) 9113.
    [50] P. Scardi, P. L. Antonucci, J. Mater. Res. 8 (1993) 1829.
    [51] E. Wicke, H. Brodowsky, H. Zuchner, in Hydrogen in Metals II, Application-Oriented Properties edited by G. Alefeld, J. Volkl, Topics in Applied Physics 29 (1978) 73.
    [52] T. Kuji, W. A. Oates, B. S. Bowerman, T. B. Flanagen, J. Phys. F. 13 (1983) 1785.
    [53] R. Lasser, J. Phys. Chem. Solids 46 (1985) 33.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE