研究生: |
許坤章 Hsu, Kun-Chang |
---|---|
論文名稱: |
I. 中孔洞二氧化矽薄膜的低溫模板分子移除法與結構性質研究. II. 鈀金屬薄膜與奈米粒子的製備及儲氫性質研究 I. Structural Characterization and Moderate Template Removal of the Mesoporous Silica Films. II. Synthesis and Characterization of Pd Metal Membrane and Nanoparticles |
指導教授: |
趙桂蓉
Chao, Kuei-Jung |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 中文 |
論文頁數: | 163 |
中文關鍵詞: | 中孔洞二氧化矽薄膜 、模板分子移除法 、X光平面反射率 、鈀奈米金屬粒子 、儲氫材料 |
外文關鍵詞: | Mesoporous silica thin film, template removal, XRR, Pd nanoparticles, Hydrogen storage |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分為兩個部分,第一部份的內容中,我們以中性的界面活性劑Brij56及三區塊共聚高分子P123作為模板分子,製備超薄(厚度~ 200 nm)且具有規則排列結構的兩種中孔洞二氧化矽薄膜,並藉由低溫的超臨界二氧化碳萃取法(SCF-CO2, at 60 oC)或紫外光-臭氧照光法(UV-O3, 25 oC)來移除薄膜中的有機模板分子,以降低一般傳統高溫鍛燒(400 ~600 oC)方式,造成的薄膜結構收縮、破壞及基材耐熱性不佳等問題。實驗結果發現,經超臨界二氧化碳萃取法處理後的薄膜,具有較佳的結構規則度;而以紫外光-臭氧照光處理後的薄膜,則具有較高的薄膜孔隙度及較低的光學折射率(n = 1.32)。
第二部份的內容中,首先我們分別以界面活性劑穩定分散及中孔洞二氧化矽為支撐材(Pd/CTAB/M41 & M48)製備Pd金屬奈米粒子,並藉由XRD及TEM的量測,探討Pd金屬奈米粒子的粒徑熱穩定性。隨後,比較不同粒徑大小的Pd金屬奈米粒子(3.0 nm Pd/CTAB/M41, 5.0 nm Pd/CTAB/M48及11 & 22 nm Pd/CTAB)與Pd金屬薄膜(10 μm)的氫氣吸附性質。在此部分的鑑定分析中,我們以同步輻射作為光源進行in-suit XRD的量測,用來觀察不同粒徑大小的Pd奈米金屬粒子,在氫氣吸附/脫附過程所造成的晶格膨潤與氫氣吸附量估算值的影響,及其儲氫能力及氫氣儲存/釋放的操作溫度影響。另外,再以in-suit XAS的量測來觀察不同粒徑大小的Pd金屬粒子,吸附氫氣後所產生的Pd-Pd鍵長改變與氫氣吸附性質影響。
The first section of this thesis is preparation of supported Brij56- or P123-SiO2 composite mesoporous silica thin films with thickness ~ 200 nm, which were dip-coated on Si-wafer, glass or Au/Cr/Si substrates. The template of mesoporous silica films were removed by supercritical fluid extraction (MeOH/SCF-CO2) at 60 oC, UV-O3 at 25 oC or thermal calcination at 400-500 oC. The SCF-CO2 modified with MeOH has been employed to remove template almost completely from Brij-56 and P123-SiO2 composite films on Si-wafer. SCF results the mesoporous silica film of higher degree of ordering and larger size of mesoporous with single mesophase than calcination. Furthermore, the supported P123-SiO2 composite films of high porosity with large surface area and pore volume, low average density and thickness were produced through UV-O3 treatment as characterized by X-ray reflectivity (XRR) and Kr adsorption, and with low refractive index of 1.32.
In the second section, we report the preparation of surfactant-stabilized (22.0, 14.6 and 11.6 nm Pd/CTAB) and surfactant/mesoporous silica composites (5.0 Pd/CTAB/M48 and 3.5 nm Pd/CTAB/M41) Pd nanoparticles by using colloid and one-pot synthesis method. After that, we study the thermal-stability of Pd nanoparticles by using X-ray diffraction (XRD) and transmission electron microscopy (TEM) analysis. In addition, the hydrogen adsorption/desorption properties of Pd nanoparticles and membrane were discussed by using in-suit XRD and X-ray absorption spectroscopy (XAS) during the hydrogen unloading or loading condition.
第一部份 中孔洞二氧化矽薄膜的低溫模板分子移除法與結構性質研究
[1] C. T. Kresge, M. E. Leonowicz, W. J. Roth, J. C. Vartuli, J. S. Beck, Nature 359 (1992) 710.
[2] K. S. W. Sing, D. H. Everett, R. H. Haul, W. L. Moscou, R. A. Pierotti, J. Rouquerol, T. Siemieniewaka, Pure Appl. Chem. 57 (1985) 603.
[3] O. Terasaki, Mesoporous crystals and related nano-structured
materials (2004) 69.
[4] J. S. Beck, J. C. Vartuli, W. J. Roth, M. E. Leonowicz, C. T. Kresge, K. D. Schmitt, J. Am. Chem. Soc. 114 (1992) 10834.
[5] H. G. Karge, J. Weitkamp, “Molecular sieves:vol. 1:Science and technology”, Springer (1998).
[6] Makoto Ogawa, Naoshi Masukawa, Microporous and Mesoporous
Materials , 38 (2000) 35.
[7] S. Che, Z. Liu, T. Ohsuna, K. Sakamoto, O. Terasaki, T. Tatsumi,
Nature, 429 (2004) 281.
[8] D. Zhao, J. Sun, Q. Li, G. D. Stucky, Chem. Mater. 12 (2000) 275.
[9] C. Yu, J. Fan, B. Tian, D. Zhao, Chem. Mater. 16 (2004) 889-898
[10] P. Falcaro, D. Grosso, H. Amenitsch, P. Innocenzi, J. Phys. Chem. B 108 (2004) 10942.
[11] C. M. Yang, A. T. Cho, F. M. Pan, T. G. Tsai, K. J. Chao, Adv. Mater. 13 (2001) 1099.
[12] A. T. Cho, J. M. Shieh, J. Shieh, Y. F. Lai, B. T. Dai, F. M. Pan, H. C. Kuo, Y. C. Lin, K. J. Chao, P. H. Liu, Electrochemical and Solid-State Letters, 8 (2005) G143-G146.
[13] G. Wirnsberger, B. J. Scott, G. D. Stucky, Chem. Commun. (2001) 119.
[14] H. Yang, A. Kuperman, N. Coombs, S. Mamiche-Afara, G. A. Ozin, Nature 379 (1996) 703.
[15] H. Yang, N. Coombs, I. Sokolov, G. A. Ozin, J. Mater. Chem. 7 (1997) 1285.
[16] M. Ogawa, J. Am. Chem. Soc. 116 (1994) 7941.
[17] E. I. Ko, ‘Sol-gel Process’, Handbook of Heterogeneous Catalysis ed. By Ertl, G., Knozinger, H., Weitkamp, J. VCH 1 (1997) 86.
[18] C. J. Brinker, Yunfeng Lu, Alan Sellinger, Hongyou Fan,
Adv. Mater. 11 (1999) 579.
[19] N. Nishiyama, S. Tanaka, Y. Egashira, Y. Oku, K. Ueyama, Chem. Mater. 15 (2003) 1006.
[20] S. Tanaka, N. Nishiyama, Y. Oku, Y. Egashira, K. Ueyama, J. Am. Chem. Soc. 126 (2004) 4854.
[21] Y. Lu, B. F. McCaughey, D. Wang, J. E. Hampsey, N. Doke, Z. Yang, C. J. Brinker, Adv. Mater. 15 (2003) 1733.
[22] P. C. A. Alberius, K. L. Frindell, R. C. Hayward, E. J. Kramer, G. D. Stucky, B. F. Chmelka, Chem. Mater. 14 (2002) 3284.
[23] X. F. Zhou, C. Z. Yu, J. W. Tang, X. X. Yan, D. Y. Zhao, Microporous and Mesoporous Mater. 79 (2005) 283.
[24] S. Yua, T. K.S. Wonga, X. Hub, T. K. Goha, Thin Solid Films 462-463 (2004) 306.
[25] T. Yamada, K. Asai , A. Endo, H. S. Zhou, I . Honma, Journal of
Materials Science Letters 19 (2000) 2167.
[26] F. Cagnol, D. Grosso, Galo J. A. A. Soler-Illia, E. L. Crepaldi, F.
Babonneau, H. Amenitschb, C. Sanchez, J. Mater. Chem., 13 (2003) 61.
[27] T. Cho, F. M. Pan, K. J. Chao, P. H. Liu, and J. Y. Chen, Thin Solid Films, 483 (2005) 283.
[28] F. Kleitz, W. Schmidt, F. Schüth, Microporous and Mesoporous
Materials 44-45 (2001) 95.
[29] D. Zhao, Q. Huo, J. Feng, B. F. Chmelka, G. D. Stucky, J. Am.
Chem. Soc. 120 (1998) 6024.
[30] F. Kleitz, W. Schmidt, F. Schüth, Microporous and Mesoporous
Materials 65 (2003) 1.
[31] S. Kawi, M. W. Lai, Chem. Commun., (1998) 1407.
[32] R.V. Grieken, G.Calleja, G. D. Stucky, J. A. Melero, R. A. Garcý´, J. Iglesias, Langmuir 19 (2003) 3966.
[33] L. Huang, C. Poh, S. C. Ng, K. Hidajat and S. Kawi, Langmuir 21 (2005) 1171.
[34] M. T. J. Keene, R. Denoyel, P. L. Llewellyn, Chem. Commun., (1998) 2203.
[35] A. M. Dattelbaum, M. L. Amweg, J. D. Ruiz, L. E. Ecke, A. P.
Shreve and A. N. Parikh, J. Phys. Chem. B 109 (2005) 14551.
[36] J. Bolze, M. Ree, K. Char, Langmuir 17 (2001) 6683.
[37] X. Li, T. K. S.Wong, Rusli, D. Yang, Diamond and Related
Materials 12 (2003) 963.
[38] http://www.rigakumsc.com/semi/about_tech.html
[39] 黃國瑩,國立清華大學化學研究所碩士論文,2004 年。
[40] K. J. Chao, P. H. Liu, K. Y. Hung, Comptes Rendus Chimie 8 (2005) 727.
[41] P. H. Liu, K. J. Chao, X. J Guo, K. Y. Huang, Y. R. Lee, C.W. Cheng, M. S. Chiu, S. L. Chang, J. Appl. Crystallogr. 38 (2005) 211.
[42] S. Dourdain, J.F. Bardeau, M. Colas, B. Smarsly, A. Mehdi, B.M. Ocko, A. Gibaud, Appl. Phys. Lett. 86 (2005) 113108.
第二部份 鈀金屬薄膜與奈米粒子的製備及儲氫性質研究
[1] T. Gramham, Phil. Trans. Roy. Soc. 156, (1866) 399.
[2] A.C. Dillon, K. M. Jones, T. A. Bekkedahl, C. H. Kiang, D. S. Bethune, M. J. Heben, Nature 386(1997) 377.
[3] N. L. Rosi, J. Eckert, M. Eddaoudi, D. T. Vodak, J. Kim, M. O’Keeffe, Science 300 (2003) 1127.
[4] Y. Li, R. T. Yang, J. Phys. Chem. B. 110 (2006) 17175.
[5] 柯賢文,科學發展2006年3月,399期,p. 68-75.
[6] 林怡均,能源報導2006年2月,p. 8 -10.]。
[7] A. Pundt, C. Sachs, M. Winter, M.T. Reetz, D. Fritsch, R. Kirchheim, J.Alloys Comp. 293-295 (1999) 480.
[8] C. Nutzenadel, A. Zuttel, D. Chartouni1, G. Schmid, L. Schlapbach, Eur. Phys. J. D, 8 (2000) 245.
[9] Y. Wang, J. Ren, K. Deng, L. Gui and Y. Tang, Chem. Mater., 12 (2000) 1622.
[10] S. Horinouchi, Y. Yamanoi, T. Yonezawa, T Mouri, H. Nishihara, Langmuir 22 (2006) 1880.
[11] T. Teranishi, M. Miyake, Chem. Mater., 10 (1998) 594.
[12] Y. Li, E. Boone, M.A. El-Sayed, Langmuir 18 (2002) 4921.
[13] R. Narayanan, M.A. El-Sayed, J. Phys. Chem. B 108 (2004) 8572.
[14] M. T. Reetz, W. Helbig, J. Am. Chem. Soc. 116 (1994) 7401.
[15] C. L. Lee, C. C. Wan, Y. Y. Wang, Adv. Func. Mater. 11 (2001) 344.
[16] B. Veisz, Z. Kiraly, Langmuir 19 (2003) 4817.
[17] A. Fukuoka, H. Araki, Y. Sakamoto, S. Inagaki, Y. Fukushima, M. Ichikawa, Inorg. Chim. Acta 350 (2003) 371.
[18] L. C. Wang, C. Y. Huang, C. Y. Chang, W. C. Lin, K. J. Chao, Micro. Mesoporous Mater. 110 (2008) 451.
[19] C. L. Lee, C. C. Wan, Y. Y. Wang, J. Electrochem. Soc. 150 (2003) 125.
[20] A. Mastlir, J. Catalysis 194 (2000) 146.
[21] D. A. T. Tanaka, M. A. L. Tanco, S. I. Niwa, Y. Wakui, F. Mizukami, T. Namba, T. M. Suzuki, J. Membr. Sci. 247 (2005) 21.
[22] A. Sieverts. Z. Physik. Chem., 88 (1914) 451.
[23] H. Frieske, E. Wicke, Ber. Bunsenges. Physik. Chem., 77 (1973) 48.
[24] F. A. Lewis, The Palladium Hydrogen System, Academic Press, (1967).
[25] A. L. Athayde, R. W. Baker, P. Nguyen, J. Membr. Sci. 1994, 94, 299.
[26] J. Tong, L. Su, Y. Kashima, R. Shirai, H. Suda, Y. Matsumura, Ind. Eng. Chem. Res. 2006, 45, 648.
[27] B. D. Morreale, M. V. Ciocco, B. H. Howard, R. P. Killmeyer, A. V. Cugini, R. M. Enick, J. Membr. Sci. 2004, 241, 219.
[28] E. M. Wise, Palladium: recovery, properties, and uses, Academic Press Inc. (1968) 49.
[29] A. Zuttel, Ch. Nutzenadel, G. Schmid, D. Chartouni, L. Schlapbach, J. Alloys Comp. 293-295 (1999) 472.
[30] V. Srivastava, R. Balasubramaniam, Mater. Sci. Engine. A304-306 (2001) 897.
[31] J. A. Eastman, L. J. Thompson, B. J. Kestel, J. Phys. Rev. B 48 (1993) 84.
[32] M. Yamauchi, R. Ikeda, H. Kitagawa, M. Takata, J. Phys. Chem. C 112, (2008) 3294.
[33] B. Baranowski, S. Majchrzak, T. B. Flanagan, J. Phys. F., 1 (1971) 258.
[34] M. Suleiman, N.M. Jisrawi, O. Dankert, M. T. Reetz, C. Bahtz, R. Kirchheim, A. Pundt, J. Alloys and Comp. 356–357 (2003) 644.
[35] A. Pundt, M. Suleiman, C. Bähtz, M. T. Reetz, R. Kirchheim, N. M. Jisrawi, Mater. Sci. Engin. B, 108 (2004) 19.
[36] A. Pundt, M. Dornheim, M. Gurerdene, H. Teichler, H. Ehrenberg, M. T. Reetz, N. M. Jisrawi, Eur. Phys. J. D. 19 (2002) 333.
[37]H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 130 (2008) 1818.
[38] H. Kobayashi, M. Yamauchi, H. Kitagawa, Y. Kubota, K. Kato, M. Takata, J. Am. Chem. Soc. 130 (2008) 1828.
[39] R. J. Davis, S. M. Landry, J. A. Horsley, M. Boudart, Phys. Rev. B, 39 (1989)10580.
[40] J. A. McCaulley, J. Phys. Chem. 97 (1993) 10372.
[41] A. Rose, S. Maniguet, R. J. Mathew, C. Slater, J. Yao, A. E. Russell, Phys. Chem. Chem. Phys., 5 (2003) 3220.
[42] H. Song, R.M. Rioux, J.D. Hoefelmeyer, R. Komor, K. Niesz, M. Grass, P.D. Yang, G.A. Somorjia, J. Am. Chem. Soc. 128 (2006) 3027.
[43] Z. Konya, V. F. Puntes, I. Kiricsi, J. Zhu, P. Alivisatos, G.A. Somorjai, Catal. Lett. 81 (2002) 137.
[44] F. Charles, The hydrolysis of Cations, 1986, p.266.
[45] 林威志,清華大學化學所碩士論文, 2006.
[46] B. S. Berry, W. C. Pritchet, Phys. Rev. B 24 (1981) 2299.
[47] C. Zener, J Appl. Phys. 22 (1951) 372.
[48] S. Y. Huang, C. D. Huang, B. T. Chang, C. T. Yeh, J. Phys. Chem. B, 110 (2006) 21783.
[49] C. W. Chou, S. J. Chu, H. J. Chiang, C. Y. Huang, C. J. Lee, S. R. Sheen, T. P. Perng, C. T. Yeh, J. Phys. Chem. B, 105 (2001) 9113.
[50] P. Scardi, P. L. Antonucci, J. Mater. Res. 8 (1993) 1829.
[51] E. Wicke, H. Brodowsky, H. Zuchner, in Hydrogen in Metals II, Application-Oriented Properties edited by G. Alefeld, J. Volkl, Topics in Applied Physics 29 (1978) 73.
[52] T. Kuji, W. A. Oates, B. S. Bowerman, T. B. Flanagen, J. Phys. F. 13 (1983) 1785.
[53] R. Lasser, J. Phys. Chem. Solids 46 (1985) 33.