研究生: |
王柏安 Wang, Po-An |
---|---|
論文名稱: |
關於不變測度的投影 On the projections of invariant measures |
指導教授: |
陳國璋
Chen, Kuo-Chang |
口試委員: |
李明佳
Li, Ming-Chia 許正雄 Hsu, Cheng-Hsiung |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 數學系 Department of Mathematics |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 19 |
中文關鍵詞: | 不變測度 、重疊投影 |
外文關鍵詞: | invariant measure, overlapped projection |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
不變測可以由它們的投影來研究。特別是關於不變測度的質心的研究近幾年受到不少關注。陳國璋和董遜(2010[3]) 發現一套方法使得不同的Tent映射的軌道有相同的質心。這可以看做是許多不同的不變測度有重疊的投影在f(x)=x這方向上。這驅使我們考慮:什麼情況下,不同的兩個轉化下所對應的不變測度能擁有重疊的投影在某個方向上?這篇論文目的即是討論此問題。
Invariant probability measures can be studied through their projections.
In particular, the study of barycenters of these invariant measures has received
much attention in resent years. K.C.Chen and X.Dong (2010 [3]) found a
way to construct different orbits with the same barycenter for the tent map. It can
be seen as that many invariant measures have overlapped projection along the
direction f(x) = x. This motivates us to consider: when can invariant measures
corresponding to two distinct transformations have overlapped projection
along some direction? This thesis aims to discuss this problem.
[1] B. Hunt and E. Ott,Optimal periodic orbits of chaotic systems occur at low period,Phy. Rev. E 54,(1996)329-337.
[2] G.H.Hardy and E.M.Wright, An introduction to the theory if numbers, Fifth ed.,Oxford University Press, New York, (1979).
[3] K.C.Chen and X.Dong, On the barycenter of the tent map., Proc. Amer. Math. Soc.,(2010).
[4] O.Jenkinson, Geometric barycentre of invariant measures for the circle maps, Ergodic Theory Dynam. Systems 21, (2001).
[5] O.Jenkinson., Frequency locking on the boundary of barycentre set ,Experiment. Math. 2000, 309-317., (1999)
[6] P.Walter, An introduction to ergodic theory, Springer, New York, (1982).
[7] R. Bamon and I. Malta and M.J. Pacifico, Changing rotation intervals of endomorphisms of the circle., Invent. Math. 83, (1986),257-264.
[8] S.Bullet and P.Sentenac, Ordered orbits of the shift, square roots, and the devil's staircase, Canad. Math. Bull. 36:1(1993), 15-21.
[9] T.Boush, Le poisson n' a pasd'aretes, Ann. Inst. H. Poincare Probab, Statist.36, (2000)489-508.