研究生: |
林丹晳 Lin, Tan-Hsi |
---|---|
論文名稱: |
3.3kV級4H碳化矽垂直型金氧半場效電晶體性能及未箝制電感切換模擬研究 Simulation Study of 3.3-kV-Class 4H-SiC DMOSFET Performance and Unclamped Inductive Switching |
指導教授: |
黃智方
Huang, Chih-Fang |
口試委員: |
李傳英
吳添立 |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 59 |
中文關鍵詞: | 3.3kV 、碳化矽 、垂直型金氧半場效電晶體 、未箝制電感切換模擬 |
外文關鍵詞: | 3.3kV, Silicon Carbide, DMOSFET, Unclamped Inductive Switching Simulation |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文分成兩部份,第一部份包含將反摻雜接面終結延伸 (CD-JTE) 應用於3.3kV級碳化矽金氧半場效電晶體之設計以及反向、順向特性之優化。在反向特性上,藉由反摻雜N型元素於P型JTE創造出多區段的效果,提升元件崩潰電壓。在順向特性上,藉由調整JFET區域寬度、電流散佈層、以及JFET區域摻雜等參數,可以將特徵導通電阻優化。根據量測結果,崩潰電壓達到90%的理想崩潰電壓,而特徵導通電阻值為13 mohm-cm2。
第二部分為未箝制電感切換 (UIS) 作用於碳化矽金氧半場效電晶體之探討,將介紹其測試目的以及原理,並且討論其失效機制。為了模擬之收斂以及符合量測資料,更改了元件之規格、結構、以及游離碰撞參數。由模擬結果得知,元件電流為11.8 A時,UIS測試失效,此時臨界溫度為1450 K。失效原因根據崩潰電流路徑,歸因於高溫時造成的閾值電壓下降。
This thesis is divided into two parts. The first part includes the design of counter-doped junction termination extension (CD-JTE) for a 3.3kV SiC DMOSFET and the optimization of its reverse and forward characteristics. On the reverse characteristics, by counter-implantation of N-type species into P-type JTE to create a multi-zone effect, the breakdown voltage of the device is increased. On the forward characteristics, by adjusting the JFET width, current spreading layer, and JFET implant parameters, the specific on-resistance can be optimized. According to the measurement results, the breakdown voltage reaches 90% of the ideal breakdown voltage, and the value of specific on resistance is 13 mohm-cm2.
The second part is the discussion of SiC DMOSFETs under Unclamped Inductive Switching (UIS). The test purpose and principle is introduced, and then the failure mechanism is discussed. For the convergence in simulation and to fit the measurement data, the device specification, structure, and impact ionization parameter has been adjusted accordingly. From the simulation results, device fails the UIS test at 11.8 A current when the critical temperature is 1450 K. The reason of failure is attributed to the decrease of threshold voltage at a high temperature, determined by the path of avalanche current.
[1] T. Kimoto, J. A. Cooper. Fundamentals of Silicon Carbide Technology. Wiley, 2014.
[2] J. N. Shenoy, J. A. Cooper, M. R. Melloch, “High-Voltage Double-Implanted Power MOSFET’s in 6H-SiC,” IEEE Electron Device Letters, vol. 18, no. 3, pp. 93-95, March 1997.
[3] V. Soler, M. Berthou, A. Mihaila,J. Monserrat,P. Godignon,J. Rebollo and J. Millán, “ Planar edge terminations for high voltage 4H-SiC power MOSFETs,” Semicond. Sci. Technol. 32 (2017) 035007.
[4] H. Yuan, Q. Song, X. Tang, L. Yuan, S. Yang, G. Tang, Y. Zhang, Y. Zhang, “Trench Multiple Floating Limiting Rings Termination for 4H-SiC High-Voltage Devices,” IEEE Electron Device Letters, vol. 37, no. 8, August 2016.
[5] C. C. Hung, C. T. Yen, L. S. Lee, and C. Y. Lee, Y. S. Chen, T. Y. Chiu, J. H. Wei, “Characteristics Improvement of 4H-SiC using Termination with P-Well Enclosure in P-Plus Floating Guard Rings for 1700V DMOSFETs,” Proceedings of the 26th International Symposiμm on Power Semiconductor Devices & IC's, pp. 217-220, June 15-19, 2014.
[6] M. C. Tarplee, V. P. Madangarli, and Q. Zhang, “Design rules for field plate edge termination in SiC Schottky diodes,” IEEE Transactions on Electron Devices, vol. 48, no. 12, pp. 2659-2664, Dec. 2001.
[7] H. Niwa, G. Feng, J. Suda, T. Kimoto, “Breakdown Characteristics of 15-kV-Class 4H-SiC PiN Diodes With Various Junction Termination Structures,” IEEE Transactions on Electron Devices, vol. 59, no. 10, pp. 2748-2752, October 2012.
[8] Y. Ding, L. Zhang, Y. Wang, R. Yue, “Single-Implant, Field Plate and Guard Rings Assist Multi-Zone Graded JTE for 4H-SiC p-i-n Diodes,” Electron Devices and Solid-State Circuits (EDSSC), IEEE International Conference on June 18-20, 2014.
[9] A. Mihaila, V. K. Sundaramoorthy, R. Minamisawa, L. Knoll, H. Bartolf, E. Bianda, G. Alfieri, M. Rahimo, “A Novel Edge Termination for High Voltage SiC Devices,” Proceedings of the 2016 28th International Symposiμm on Power Semiconductor Devices and ICs (ISPSD), pp. 223-226, June 12-16, 2016.
[10] G. Feng, J. Suda, T. Kimoto, “Space-Modulated Junction Termination Extension for Ultrahigh-Voltage p-i-n Diodes in 4H-SiC,” IEEE Transactions on Electron Devices, vol. 59, no. 2, pp.414-418, February 2012.
[11] C. F. Huang, H. C. Hsu, K. W. Chu, L. H. Lee, M. J. Tsai, K. Y. Lee, F. Zhao, “Counter-Doped JTE, an Edge Termination for HV SiC Devices With Increased Tolerance to the Surface Charge,” IEEE Transactions on Electron Devices, vol. 62, no. 2, pp. 354-358, February 2015.
[12] D. L. Blackburn, “TURN-OFF FAILURE OF POWER MOSFETS,” IEEE Power Electronics Specialists Conference, pp. 429-435, June 24-28, 1985.
[13] K. Fischer, K. Shenai, “Dynamics of Power MOSFET Switching Under Unclamped Inductive Loading Conditions,” IEEE Transactions on Electron Devices, vol. 43, no. 6, pp. 1007-1015, June 1996.
[14] L. Yang, A. Fayyaz, A. Castellazzi, “Characterization of High-Voltage SiC MOSFETs under UIS Avalanche Stress,” Power Electronics, Machines and Drives (PEMD 2014), 7th IEET International Conference on 8-10 April 2014.
[15] M. D. Kelley, B. N. Pushpakaran, S. B. Bayne, “Single-Pulse Avalanche Mode Robustness of Commercial 1200 V/80 mΩ SiC MOSFETs, ” IEEE Transactions on Power Electronics, vol. 32, no. 8, pp. 6405-6415, August 2017.
[16] A. O. Konstantinov, Q.Wahab, N. Nordell, and U. Lindefeltd, “Ionization rates and critical fields in 4H silicon carbide,” Applied Physics Letters, vol. 71, no. 1, pp. 90-92, 1997.
[17] B. J. Baliga. Fundamentals of Power Semiconductor Devices. Springer, 2008.
[18] A. Saha, J. A. Cooper, “A 1-kV 4H-SiC Power DMOSFET Optimized for Low ON-Resistance,” IEEE Transactions on Electron Devices, vol. 54, no. 10, pp. 2786-2791, October 2007.
[19] R. S. Howell, S. Buchoff, S. V. Campen, T. R. McNutt, A. Ezis, B. Nechay, C. F. Kirby, M. E. Sherwin, R. C. Clarke, R. Singh, “A 10-kV Large-Area 4H-SiC Power DMOSFET With Stable Subthreshold Behavior Independent of Temperature,” IEEE Transactions on Electron Devices, vol. 55, no. 8, pp. 1807-1815, August 2008.
[20] R. R. Stoltenburg, “BOUNDARY OF POWER-MOSFET, UNCLAMPED INDUCTIVE-SWITCHING (UIS), AVALANCHE-CURRENT CAPABILITY,” Applied Power Electronics Conference and Exposition, 13-17 March 1989, Fourth Annual IEEE.
[21] A. I. Deckelmann, G. Wachutka, J. Krumrey, F. Hirler, “Failure Mechanism of Power DMOS Transistors under UIS Stress Conditions,” Advanced Semiconductor Devices and Microsystems, The Fourth International Conference on 14-16 Oct. 2002.
[22] A. Fayyaz, A. Castellazzi, G. Romano, M. Riccio, A. Irace, J. Urresti, N. Wright, “UIS failure mechanism of SiC power MOSFETs,” Wide Bandgap Power Devices and Applications (WiPDA), IEEE 4th Workshop on 7-9 Nov. 2016.
[23] M. Glavanovics, H. Zitta, “Thermal Destruction Testing: an Indirect Approach to a Simple Dynamic Thermal Model of Smart Power Switches,” Proceedings of the 27th European Solid-State Circuits Conference (ESSCIRC), 18-20 Sept. 2001.
[24] D. L. Blackburn, “POWER MOSFET FAILURE REVISITED,” Power Electronics Specialists Conference (PESC), 19th Annual IEEE, 11-14 April 1988.
[25] ATLAS User's Manual, SILVACO, 2016.
[26] T. Ayalew, J.M. Park, A. Gehring, T. Grasser, S. Selberherr, “MODELING AND SIMULATION OF SiC MOSFETs,” Proceedings of the IASTED International Conference Applied Simulation and Modelling, September 3-5, 2003.
[27] A. I. Deckelmann, G.Wachutka, F. Hirler, J. Krμmrey, “UIS-Failure for DMOS Power Transistors,” Proceeding of the 32nd European Solid-State Device Research Conference (ESSDRC), 24-26 Sept. 2002.
[28] J. Hu, O. Alatise, J. A. Ortiz-Gonzalez, P. Alexakis, L. Ran, P. Mawby, “Finite Element Modelling and Experimental Characterisation of Paralleled SiC MOSFET Failure under Avalanche Mode Conduction,” Power Electronics and Applications (EPE'15 ECCE-Europe), 17th European Conference on 8-10 Sept. 2015.