簡易檢索 / 詳目顯示

研究生: 鄔啓瑞
Wu, Chi-Jui
論文名稱: 以航點為基礎的室內導航系統
Waypoint-based Indoor Navigation System
指導教授: 張韻詩
Liu, Jane
口試委員: 金仲達
King, Chung-Ta
麥偉基
Mak, Wai-Kei
朱宗賢
Chu, Tsung-Hsien
學位類別: 碩士
Master
系所名稱:
論文出版年: 2018
畢業學年度: 107
語文別: 英文
論文頁數: 105
中文關鍵詞: 室內導航
外文關鍵詞: indoor navigation
相關次數: 點閱:56下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 以航點為基礎的室內導航系統是一個可實行的室內導航解決方法。此系統的目標即是將此系統廣泛的佈建於不同類型與型態的建築,這些建築的是內空間經常是擁有大量的人潮、複雜的室內架構使得人們容易在室內空間內走失而需要導航的幫助。
    本系統主要由三個元件組成:BeDIPS、Navigation Graph以及Waypoint-based navigator。BeDIPS提供了室內定位的服務,其使用了部署於室內空間的Lbeacon傳送地點資訊,透過此地點資訊通知使用者目前所在的位置。這些地點資訊儲存於Navigation Graph之中代表著室內空間的某個地點,而裝載在導航器上的Navigation Graph正是提供了路線規劃的資料以及定位的地點資訊。


    Waypoint-based indoor navigation is a practical solution to indoor navigation. The navigation system aims to be deployed at a variety of different buildings, which are usually full of people or have complicated interior structure and layout where people can easily get lost or have requests for indoor navigation services.
    The navigation system is composed of an indoor positioning system, navigation graph(s) and waypoint-based navigator(s). The indoor positioning system used in the system is called Building/environment Data-Based Indoor Positioning Service (BeDIPS) which uses Location Beacons (Lbeacons)to broadcast location data to their nearby devices in order to inform the users their locations in an indoor environment. The location data represents a location in an indoor space that modeled by a hierarchical graph called navigation graph. The navigation graph of a building can be downloaded to the waypoint-based navigator, providing the essential routing data and positioning information.

    1 Introduction …………………………………………………………………………….1 1.1 Motivation …………………………………………………………………………. 2 1.2 Structure of Navigation System …………………………………………………….5 1.3 Elements of waypoint-based navigation system ……………………………………8 1.4 Contributions ………………………………………………………………………15 1.5 Organization ……………………………………………………………………….16 2 Related Works ……………………………………………………………………......18 2.1 Indoor Positioning Technologies ………………………………………………….18 2.2 Indoor Spatial Models ……………………………………………………………. 23 2.3 Navigation Graph and Generation of Navigation Graph ………………………….27 2.4 Shortest Path Problems and Algorithms …………………………………………. 29 2.5 Navigator User Interfaces …………………………………………………………34 3 Construction of Navigation Graph ……………………………………………….39 3.1 Hierarchical Navigation Model ………………………………………………….39 3.1.1 More on Region Graph ………………………………………………….40 3.1.2 More on Navigation Subgraph …………………………………………..42 3.2 Modeling Indoor Space: Real-Life Example ……………………………………43 3.2.1 Modeling Indoor Space by Region Graph ………………………………..43 3.2.2 Modeling Indoor Space by Navigation Subgraph …………………….….46 3.2.3 Summary of Navigation Graph ………………………………………..…49 3.3 Definition of Navigation Graph ……………………………………………….....50 3.3.1 Data Structure and Elements of Region Graph ………………………......50 3.3.2 Data Structure and Elements of Navigation Subgraph …………………..53 3.4 Data Structure of Navigation Graph ……………………………………………..58 3.5 Waypoint Selection for Navigation Graph ………………………………………61 4 Design and Implementation of Waypoint-based Navigator …………………66 4.1 Design of the Navigator ………………………………………………………….66 4.1.1 Design of the Navigator User Interface ………………………………….67 4.1.2 Operation Flow of the Navigator …………………………………….…..69 4.2 Design of the Navigation Instruction Generator …………………………………71 4.2.1 Structure of the Navigation Instruction Generator ………………………72 4.2.2 Navigation Instruction Vocabularies …………………………………….73 4.2.3 Structure of Navigation Instruction ……………………………………...75 4.2.4 Details on Navigation Instruction Generation …………………………...76 4.3 Implementation of the Navigator ………………………………………………...81 4.3.1 Development Environment ………………………………………………81 4.3.2 Implementation Issues ……………………………………………………82 5 Navigate Anywhere …………………………………………………………………89 5.1 Possible Use Scenarios on Navigate Anywhere .....................................................89 5.2 Design of Navigate Anywhere Navigator ………………………………………...94 5.2.1 The Structure of Navigator Anywhere Navigator ………………………..95 5.2.2 Possible Solutions on Switching Localization Mode …………………….97 6 Conclusion and Future Works …………………………………………………....100

    [1] Waypoint, https://en.wikipedia.org/wiki/Waypoint: Last retrieved: February 2018
    [2] Indoor Positioning System, https://en.wikipedia.org/wiki/Indoor_positioning_system: Last retrieved: February 2018
    [3] L. Yang and M. F. Worboys, “Generation of navigation graph for indoor space,” International Journal of Geographical Information Science, 17:16, May 2015, pp. 1737-1756.
    [4] C. C. Li, J. Su, E. T.-H. Chu and J. W. S. Liu, “Building/environment Data/information Enabled Location Specificity and Indoor Positioning,” IEEE Internet of Things Journal, 2017. 

    [5] J.W.S.Liu, L.J.Chen, J.Su, C.C.LiandE.T.H.Chu, "A Building/environment Data Based Indoor Positioning Service," 2015 IEEE International Conference on Data Science and Data Intensive Systems (DSDIS), December 2015
    [6] Navigational instrument, https://en.wikipedia.org/wiki/Navigational_instrument: Last retrieved: February 2018
    [8] Global Positioning Systmem, https://en.wikipedia.org/wiki/Global_Positioning_System: Last retrieved: February 2018
    [9] B. Peterson, D. Bruckner, and S. Heye, “Measuring GPS Signals Indoors”, Proceedings of the Institute of Navigation ION GPS-97, pp. 615–624, 1997.
    [10] Yapeng Wang, Xu Yang, Yutian Zhao, “Bluetooth positioning using RSSI and triangulation methods,” Consumer Communications and Networking Conference (CCNC), 2013
    [11] Santosh Subedi, Goo-Rak Kwon, Seokjoo Shin, “Beacon based indoor positioning system using weighted centroid localization approach,” Eighth International Conference on Ubiquitous and Future Networks (ICUFN), 2016
    [12] Santosh Subedi, Jae-Young Pyun, “Practical Fingerprinting Localization for Indoor Positioning System by Using Beacons,” Journal of Sensors
    Volume 2017 (2017), Article ID 9742170, 16 pages
    [13] Min-Seok Choi, Beakcheol Jang, “An Accurate Fingerprinting based Indoor Positioning Algorithm,” International Journal of Applied Engineering Research ISSN 0973-4562 Volume 12, Number 1 (2017) pp. 86-90
    [14] Augmented Reality Indoor Navigation, https://blog.mapbox.com/indoor-navigation-in-ar-with-unity-6078afe9d958: Last retrieved: October 2018
    [15] 2-D floor plan navigator, https://www.infsoft.com/solutions/indoor-navigation, Last retrieved: February 2018
    [16] BIM, Building Information Models/Modeling. Available: http://en.wikipedia.org/wiki/Building_information_modeling, Last retrieved: February 2018
    [17] FM (Facility Management), https://en.wikipedia.org/wiki/Facility_management, Last retrieved: February 2018
    [18] Bluetooth Core Specification. https://www.bluetooth.org/en- us/specification/adopted-specifications, Last retrieved: February 2018

    [19] X. Hu, L. Cheng, and G. Zhang, “A Zigbee-based localization algorithm
for indoor environments,” in Proc. of ICCSNT ’11, 2011, pp. 1776 –
1781.
    [25] R.K.Crane,PropagationHandbookforWirelessCommunication System Design, Electrical Engineering & Applied Signal Process- ing Series, Taylor & Francis, 2003.
    [26] H. L. Bertoni, Radio Propagation for Modern Wireless Systems, Prentice Hall, 2000. 

    [27] M. Shchekotov. Indoor Localization Method Based on Wi-Fi Trilateration Technique, Proceedings of the 16th Conference of Open Innovations Association FRUCT, Oulu, Finland, October 27-31, 2014, pp.177-179
    [28] P. Jiang, Y. Zhang, W. Fu, H. Liu, and X. Su, “Indoor mobile localization based on Wi-Fi fingerprint’s important access point,” International Journal of Distributed Sensor Networks, vol. 2015, Article ID 429104, 8 pages, 2015.
    [29] Bluetooth, https://en.wikipedia.org/wiki/Bluetooth, Last retrieved: February 2018
    [30] C. Bisdikian, “An overview of the Bluetooth wireless technology,” IEEE Communications Magazine, vol. 39, no. 12, pp. 86–94, 2001.
    [31] R. Faragher and R. Harle, “Location fingerprinting with blue- tooth low energy beacons,” IEEE Journal on Selected Areas in Communications, vol. 33, no. 11, pp. 2418–2428, 2015.
    [32] T. Q. Wang, Y. A. Sekercioglu, A. Neild, and J. Armstrong (October 2013) “Position accuracy of time-of-arrival based ranging using visible light with application in indoor localization systems,” IEEE Jr. of Lightwave Technology, Vol. 31, No.20, 2013, pp. 3302-3308.
    [34] T. Van Haute, E. De Poorter, et al., " Performance analysis of multiple Indoor Positioning Systems in a healthcare environment,” Int. Jr. of Health Geographics, Vol 15, No. 7, 2016, 15 pages
    [35] J. Chung, M. Donahoe, C. Schmandt, I.-J. Kim, et al., “Indoor location sensing using geo-magnetism,” in Proc. of MobSys, 2011, pp. 141-154.
    [36] P. Bahl and V. Padmanabhan, "RADAR: an in-building RF-based user location and tracking system," in Proc. of IEEE INFOCOM, 2000, pp. 775—784.
    [37] A. Farshad, J. Li, M. K. Marina and F. J. Garcia “A microscopic look at WiFi fingerprinting for indoor mobile phone localization in diverse environments,” In Proc. of IPIN , 2013.
    [38] Y. Chen, D. Lymberopoulos, J. Liu, and B. Priyantha, "FM-based indoor localization," in Proc. of ACM MobiSys, 2012, pp. 169-182
    [39] A. Popleteev, "Indoor Positioning Using FM Radio Signals," PhD Dissertation. University of Trento, Italy, 2011.
    [40] P. Wawrzyniak, P. Korbel, P. Skulimowski, and P. Poryzala, "Mixed- mode wireless indoor positioning system using proximity detection and database correlation," in Proc. of FedCSIS. 2014, pp. 1035 – 1042.
    [41] iBeacon.Available:http://en.wikipedia.org/wiki/IBeacon
    [42] Eddystone, https://developers.google.com/beacons/eddystone 

    [43] Proximity marketing. http://en.wikipedia.org/wiki/Proximity_marketing 

    [44] J. Lindh, “Bluetooth Low Energy beacons,” Texas Instruments, Application Report SWRA475, January 2015. 

    [45] Imad Afyouni, Cyril Ray, and Christophe Claramunt, “Spatial models for context-aware indoor navigation systems:
A survey,” JOURNAL OF SPATIAL INFORMATION SCIENCE,
Number 4 (2012), pp. 85–123
    [46] DEY, A., AND ABOWD, G. Towards a better understanding of context and context- awareness. In Proc. First International Symposium on Handheld and Ubiquitous Comput- ing (HUC) (Berlin, 1999), Springer. doi:10.1007/3-540-48157-5 29.
    [47] LI, K.-J. Indoor space: A new notion of space. In Proc. 8th International Sympo- sium on Web and Wireless Geographical Information Systems (W2GIS) (2008), pp. 1–3. doi:10.1007/978-3-540-89903-7 1.
    [48] HU, H., AND LEE, D. Semantic location modeling for location navigation in mobile environment. In Proc. IEEE International Conference on Mobile Data Management, MDM (2004), IEEE, pp. 52–61. doi:10.1109/MDM.2004.1263042.
    [49] LI, D., AND LEE, D. A lattice-based semantic location model for indoor navigation. In Proc. 9th International Conference on Mobile Data Management (2008), IEEE, pp. 17–24. doi:10.1109/MDM.2008.11.
    [50] KAINZ, W., EGENHOFER, M., AND GREASLEY, I. Modeling spatial relations and operations with partially ordered sets. International Journal of Geographical Information Science 7, 3 (1993), 215–229. doi:10.1080/02693799308901953. 

    [51] FRANZ, G., MALLOT, H., WIENER, J., AND NEUROWISSENSCHAFT, K. Graph-based models of space in architecture and cognitive science: A comparative analysis. In Proc. 17th International Conference on Systems Research, Informatics and Cybernetics, InterSymp (2005), pp. 30–38.
    [52] Yang, L.; Worboys, M. Generation of navigation graphs for indoor space. Int. J. Geogr. Inf. Sci. 2015
    [53] B. Hofmann-Wellenhof, K. Legat, and M. Wieser. Navigation: Principles of
    Navigation and Guidance. Springer, 2003.
    [54] E. W. Dijkstra. “A note on two problems in connexion with graphs”. In:
    Numerische Mathematik 1.1 (Dec. 1959), pp. 269–271

    [57] Path Guide, https://www.itweb.co.za/content/XGxwQDM1EZWMlPVo
    [58] Representation of Graph, https://www.geeksforgeeks.org/graph-and-its-representations/, Last retrieved: March 2018
    [59] HashMap in Java, https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html, Last retrieved: March 2018
    [60] Activity defined in Android appliction, https://developer.android.com/reference/android/app/Activity.html, Last retrieved: March 2018
    [61] Smartphone OS market share, https://www.idc.com/promo/smartphone-market-share/os, Last retrieved: March 2018
    [62] Android Studio, https://developer.android.com/studio/features.html, Last retrieved: March 2018
    [63] Integrated Development environment, https://en.wikipedia.org/wiki/Integrated_development_environment, Last retrieved: March 2018
    [64] Android version dashboards, https://developer.android.com/about/dashboards/index.html, Last retrieved: March 2018
    [65] Dalvik, https://en.wikipedia.org/wiki/Dalvik_(software), Last retrieved: March 2018
    [66] Dijkstra’s algorithm implemented in Java, http://www.baeldung.com/java-dijkstra, Last retrieved: March 2018
    [67] Calculation of Bearing between latitude/longitude points, https://www.movable-type.co.uk/scripts/latlong.html, Last retrieved: March 2018
    [68] IPS1, https://www.infsoft.com
    [69] IPS2, https://www.airfinder.com/blog/indoor-positioning-system
    [70] IPS3, https://www.starwing.com.tw/en
    [73] Proximity-based Positioning, https://senion.com/insights/point-positioning-vs-true-location/
    [74] Ramon F. Brena et al. “Evolution of Indoor Positioning Technologies: A Sur- vey”. In: Journal of Sensors (2017).
    [75] Wong C, Klukas R., Messier G.Using WLAN infrastructure for angle-of-arrival indoor user location Proceedings of the 68th Semi-Annual IEEE Vehicular Technology
    [76] Revit, https://www.autodesk.com/products/revit/overview, Last retrieved: June 2018

    QR CODE