研究生: |
徐斌富 Hsu, Bin-Fu |
---|---|
論文名稱: |
自組裝單層分子薄膜降低 Ru/SAM/SiO2 界面散射 Interface engineering with self-assembled monolayer (SAM) film in reducing interface scattering at Ru/SAM/SiO2 |
指導教授: |
龔佩雲
Keng, Pei-Yuin |
口試委員: |
呂明諺
Lu, Ming-Yen 陳俊太 Che, Jiun-Tai |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2023 |
畢業學年度: | 111 |
語文別: | 英文 |
論文頁數: | 81 |
中文關鍵詞: | 自組裝單層分子膜 、電子散射 、半導體後段製程 、釕 |
外文關鍵詞: | electron scattering, Fuchs−Sondheimer (FS) model |
相關次數: | 點閱:52 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著積體電路(IC)器件變得更加高效,使得半導體後段製程(BEOL)導線技術的金屬內連線尺寸縮小。由於通孔尺寸縮小,金屬電阻率逐漸受到表面散射影響。本碩士論文中探討了在介電層表面上形成超薄膜厚度(1.3奈米)的自組裝單分子層(SAM)以減少界面散射,從而降低整體金屬電阻率。具體而言,我們設計了一種BITES(苯基亞胺三乙氧基矽烷)的自組裝單分子層,其中末端芳胺基團能夠潛在地減少非彈性電子散射並同時改善金屬和二氧化矽間的附著性。根據Fuchs−Sondheimer(FS)模型,在結構為Ru/SAM/SiO2界面的反射率參數(p值)確定為p ≈ 0.9。在400℃的高速熱退火處理60分鐘後,BITES的p值接近p ≈ 0.95,而TaN作為襯墊層的p值為0.1。此外,這項研究首次展示了Ru/BITES/SiO2結構下降低整體金屬電阻率性能的同時也增強了金屬和二氧化矽界面的附著強度。
As integrated circuit (IC) devices become more efficient, interconnect downscaling needs to be implemented in the back-end-of-line (BEOL) technology. As a result of the downscaling of the vias dimension, the metal resistivity is dominated by surface scattering. Herein, we investigated the functionalization of a self-assembled monolayer (SAM) with ultrathin film thickness (1.3 nm) onto the dielectric surface in reducing interface scattering, thus reducing the overall metal resistivity. Specifically, we designed a SAM of BITES (benzyliminetriethoxysilane), in which the terminal arylimine group could potentially reduced inelastic electron scattering and simultaneous improved metal/SiO2 adhesion. According to the Fuchs−Sondheimer (FS) model, the specularity parameter of the as-deposited Ru/SAMs/SiO2 interface was determined to be p ≈ 0.9. Upon thermal annealing at 400 oC for 60 mins, the p-value of BITES approaches p ≈ 0.95 compared to 0.1 for TaN as a liner. Furthermore, this study demonstrates for the first time simultaneous enhancement in the electrical performance of the Ru/BITES/SiO2 along with the increased in adhesion strength between the metal/SiO2 interface.
[1] Fen Chen, D. Gardner, Influence of line dimensions on the resistance of Cu interconnections, IEEE Electron Device Lett. 19 (1998) 508–510. https://doi.org/10.1109/55.735762.
[2] D. Gall, Electron mean free path in elemental metals, Journal of Applied Physics. 119 (2016) 085101. https://doi.org/10.1063/1.4942216.
[3] W. Zhang, S.H. Brongersma, O. Richard, B. Brijs, R. Palmans, L. Froyen, K. Maex, Influence of the electron mean free path on the resistivity of thin metal films, Microelectronic Engineering. 76 (2004) 146–152. https://doi.org/10.1016/j.mee.2004.07.041.
[4] D. Gall, The search for the most conductive metal for narrow interconnect lines, Journal of Applied Physics. 127 (2020) 050901. https://doi.org/10.1063/1.5133671.
[5] N. Fréty, F. Bernard, J. Nazon, J. Sarradin, J.C. Tedenac, Copper Diffusion Into Silicon Substrates Through TaN and Ta/TaN Multilayer Barriers, Journal of Phase Equilibria & Diffusion. 27 (2006) 590–597. https://doi.org/10.1361/154770306X153602.
[6] D. Edelstein, C. Uzoh, C. Cabral, P. DeHaven, P. Buchwalter, A. Simon, E. Cooney, S. Malhotra, D. Klaus, H. Rathore, B. Agarwala, D. Nguyen, A high performance liner for copper damascene interconnects, in: Proceedings of the IEEE 2001 International Interconnect Technology Conference (Cat. No.01EX461), IEEE, Burlingame, CA, USA, 2001: pp. 9–11. https://doi.org/10.1109/IITC.2001.930001.
[7] J. Nazon, M.-H. Berger, J. Sarradin, J.-C. Tedenac, N. Fréty, Thermal Stability of TaN-Based Thin Layers for Cu Metallization, Plasma Processes Polym. 6 (2009) S844–S848. https://doi.org/10.1002/ppap.200932107.
[8] I. Ciofi, A. Contino, P.J. Roussel, R. Baert, V.-H. Vega-Gonzalez, K. Croes, M. Badaroglu, C.J. Wilson, P. Raghavan, A. Mercha, D. Verkest, G. Groeseneken, D. Mocuta, A. Thean, Impact of Wire Geometry on Interconnect RC and Circuit Delay, IEEE Trans. Electron Devices. 63 (2016) 2488–2496. https://doi.org/10.1109/TED.2016.2554561.
[9] K. Lionti, N. Arellano, N. Lanzillo, S. Nguyen, P.S. Bhosale, H. Bui, T. Topuria, R.J. Wojtecki, Area-Selective Deposition of Tantalum Nitride with Polymerizable Monolayers: From Liquid to Vapor Phase Inhibitors, Chem. Mater. 34 (2022) 2919–2930. https://doi.org/10.1021/acs.chemmater.1c03436.
[10] C. Lo, M. Catalano, A. Khosravi, W. Ge, Y. Ji, D.Y. Zemlyanov, L. Wang, R. Addou, Y. Liu, R.M. Wallace, M.J. Kim, Z. Chen, Enhancing Interconnect Reliability and Performance by Converting Tantalum to 2D Layered Tantalum Sulfide at Low Temperature, Adv. Mater. 31 (2019) 1902397. https://doi.org/10.1002/adma.201902397.
[11] C.-L. Lo, B.A. Helfrecht, Y. He, D.M. Guzman, N. Onofrio, S. Zhang, D. Weinstein, A. Strachan, Z. Chen, Opportunities and challenges of 2D materials in back-end-of-line interconnect scaling, Journal of Applied Physics. 128 (2020) 080903. https://doi.org/10.1063/5.0013737.
[12] A.R. Yadav, R. Sriram, J.A. Carter, B.L. Miller, Comparative study of solution–phase and vapor–phase deposition of aminosilanes on silicon dioxide surfaces, Materials Science and Engineering: C. 35 (2014) 283–290. https://doi.org/10.1016/j.msec.2013.11.017.
[13] M. Zhu, M.Z. Lerum, W. Chen, How To Prepare Reproducible, Homogeneous, and Hydrolytically Stable Aminosilane-Derived Layers on Silica, Langmuir. 28 (2012) 416–423. https://doi.org/10.1021/la203638g.
[14] Y. Chung, S. Lee, C. Mahata, J. Seo, S.-M. Lim, M. Jeong, H. Jung, Y.-C. Joo, Y.-B. Park, H. Kim, T. Lee, Coupled self-assembled monolayer for enhancement of Cu diffusion barrier and adhesion properties, RSC Adv. 4 (2014) 60123–60130. https://doi.org/10.1039/C4RA08134J.
[15] A. Krishnamoorthy, K. Chanda, S.P. Murarka, G. Ramanath, J.G. Ryan, Self-assembled near-zero-thickness molecular layers as diffusion barriers for Cu metallization, Appl. Phys. Lett. 78 (2001) 2467–2469. https://doi.org/10.1063/1.1365418.
[16] A. Maestre Caro, G. Maes, G. Borghs, C.M. Whelan, Screening self-assembled monolayers as Cu diffusion barriers, Microelectronic Engineering. 85 (2008) 2047–2050. https://doi.org/10.1016/j.mee.2008.04.014.
[17] N. Mikami, N. Hata, T. Kikkawa, H. Machida, Robust self-assembled monolayer as diffusion barrier for copper metallization, Appl. Phys. Lett. 83 (2003) 5181–5183. https://doi.org/10.1063/1.1635665.
[18] C.-L. Lo, K. Zhang, J.A. Robinson, Z. Chen, BEOL compatible sub-nm diffusion barrier for advanced Cu interconnects, in: 2018 International Symposium on VLSI Technology, Systems and Application (VLSI-TSA), IEEE, Hsinchu, 2018: pp. 1–2. https://doi.org/10.1109/VLSI-TSA.2018.8403818.
[19] A.M. Caro, S. Armini, O. Richard, G. Maes, G. Borghs, C.M. Whelan, Y. Travaly, Bottom-Up Engineering of Subnanometer Copper Diffusion Barriers Using NH2-Derived Self-Assembled Monolayers, Advanced Functional Materials. 20 (2010) 1125–1131. https://doi.org/10.1002/adfm.200902072.
[20] J. Bogan, A. Brady-Boyd, S. Armini, R. Lundy, V. Selvaraju, R. O’Connor, Nucleation and adhesion of ultra-thin copper films on amino-terminated self-assembled monolayers, Applied Surface Science. 462 (2018) 38–47. https://doi.org/10.1016/j.apsusc.2018.08.029.
[21] P.-H. Wu, Y.-Z. Lai, Y.-P. Zhang, M.C. Sil, P.-H.H. Lee, T.-C. Wei, C.-M. Chen, Organosiloxane Monolayers Terminated with Amine Groups as Adhesives for Si Metallization, ACS Appl. Nano Mater. 3 (2020) 3741–3749. https://doi.org/10.1021/acsanm.0c00430.
[22] X. Crispin, V. Geskin, A. Crispin, J. Cornil, R. Lazzaroni, W.R. Salaneck, J.-L. Brédas, Characterization of the Interface Dipole at Organic/ Metal Interfaces, J. Am. Chem. Soc. 124 (2002) 8131–8141. https://doi.org/10.1021/ja025673r.
[23] H. Vázquez, F. Flores, A. Kahn, Induced Density of States model for weakly-interacting organic semiconductor interfaces, Organic Electronics. 8 (2007) 241–248. https://doi.org/10.1016/j.orgel.2006.07.006.
[24] R.C. Hoft, M.J. Ford, A.M. McDonagh, M.B. Cortie, Adsorption of Amine Compounds on the Au(111) Surface: A Density Functional Study, J. Phys. Chem. C. 111 (2007) 13886–13891. https://doi.org/10.1021/jp072494t.
[25] Y. Morikawa, K. Toyoda, I. Hamada, S. Yanagisawa, K. Lee, First-principles theoretical study of organic/metal interfaces: Vacuum level shifts and interface dipoles, Current Applied Physics. 12 (2012) S2–S9. https://doi.org/10.1016/j.cap.2012.06.021.
[26] G. Witte, S. Lukas, P.S. Bagus, C. Wöll, Vacuum level alignment at organic/metal junctions: “Cushion” effect and the interface dipole, Appl. Phys. Lett. 87 (2005) 263502. https://doi.org/10.1063/1.2151253.
[27] G.E. Moore, Cramming More Components onto Integrated Circuits, PROCEEDINGS OF THE IEEE. 86 (1998).
[28] T.T. Tran, Synthesis of Germanium-Tin Alloys by Ion Implantation and Pulsed Laser Melting: Towards a Group IV Direct Band Gap Semiconductor, (2017). https://doi.org/10.13140/RG.2.2.35626.11200.
[29] C. Adelmann, L.G. Wen, A.P. Peter, Y.K. Siew, K. Croes, J. Swerts, M. Popovici, K. Sankaran, G. Pourtois, S. Van Elshocht, J. Bommels, Z. Tokei, Alternative metals for advanced interconnects, in: IEEE International Interconnect Technology Conference, IEEE, San Hose, CA, USA, 2014: pp. 173–176. https://doi.org/10.1109/IITC.2014.6831863.
[30] K. Croes, Ch. Adelmann, C.J. Wilson, H. Zahedmanesh, O.V. Pedreira, C. Wu, A. Lesniewska, H. Oprins, S. Beyne, I. Ciofi, D. Kocaay, M. Stucchi, Zs. Tokei, Interconnect metals beyond copper: reliability challenges and opportunities, in: 2018 IEEE International Electron Devices Meeting (IEDM), IEEE, San Francisco, CA, 2018: p. 5.3.1-5.3.4. https://doi.org/10.1109/IEDM.2018.8614695.
[31] L.G. Wen, P. Roussel, O.V. Pedreira, B. Briggs, B. Groven, S. Dutta, M.I. Popovici, N. Heylen, I. Ciofi, K. Vanstreels, F.W. Østerberg, O. Hansen, D.H. Petersen, K. Opsomer, C. Detavernie, C.J. Wilson, S.V. Elshocht, K. Croes, J. Bömmels, Z. Tőkei, C. Adelmann, Atomic Layer Deposition of Ruthenium with TiN Interface for Sub-10 nm Advanced Interconnects beyond Copper, ACS Appl. Mater. Interfaces. 8 (2016) 26119–26125. https://doi.org/10.1021/acsami.6b07181.
[32] A.A. Vyas, C. Zhou, C.Y. Yang, On-Chip Interconnect Conductor Materials for End-of-Roadmap Technology Nodes, IEEE Trans. Nanotechnology. 17 (2018) 4–10. https://doi.org/10.1109/TNANO.2016.2635583.
[33] T. Zhou, P. Zheng, S.C. Pandey, R. Sundararaman, D. Gall, The electrical resistivity of rough thin films: A model based on electron reflection at discrete step edges, Journal of Applied Physics. 123 (2018) 155107. https://doi.org/10.1063/1.5020577.
[34] K. Fuchs, The conductivity of thin metallic films according to the electron theory of metals, Math. Proc. Camb. Phil. Soc. 34 (1938) 100–108. https://doi.org/10.1017/S0305004100019952.
[35] A.F. Mayadas, M. Shatzkes, J.F. Janak, ELECTRICAL RESISTIVITY MODEL FOR POLYCRYSTALLINE FILMS: THE CASE OF SPECULAR REFLECTION AT EXTERNAL SURFACES, Appl. Phys. Lett. 14 (1969) 345–347. https://doi.org/10.1063/1.1652680.
[36] A.F. Mayadas, M. Shatzkes, Electrical-Resistivity Model for Polycrystalline Films: the Case of Arbitrary Reflection at External Surfaces, Phys. Rev. B. 1 (1970) 1382–1389. https://doi.org/10.1103/PhysRevB.1.1382.
[37] P.Y. Zheng, R.P. Deng, D. Gall, Ni doping on Cu surfaces: Reduced copper resistivity, Appl. Phys. Lett. 105 (2014) 131603. https://doi.org/10.1063/1.4897009.
[38] J.S. Chawla, F. Zahid, H. Guo, D. Gall, Effect of O2 adsorption on electron scattering at Cu(001) surfaces, Appl. Phys. Lett. 97 (2010) 132106. https://doi.org/10.1063/1.3489357.
[39] P. Zheng, T. Zhou, D. Gall, Electron channeling in TiO 2 coated Cu layers, Semicond. Sci. Technol. 31 (2016) 055005. https://doi.org/10.1088/0268-1242/31/5/055005.
[40] E. Milosevic, D. Gall, Copper Interconnects: Surface State Engineering to Facilitate Specular Electron Scattering, IEEE Trans. Electron Devices. 66 (2019) 2692–2698. https://doi.org/10.1109/TED.2019.2910500.
[41] I. Ciofi, P.J. Roussel, R. Baert, A. Contino, A. Gupta, K. Croes, C.J. Wilson, D. Mocuta, Z. Tokei, RC Benefits of Advanced Metallization Options, IEEE Trans. Electron Devices. 66 (2019) 2339–2345. https://doi.org/10.1109/TED.2019.2902031.
[42] J. Hong, S. Lee, S. Lee, H. Han, C. Mahata, H.-W. Yeon, B. Koo, S.-I. Kim, T. Nam, K. Byun, B.-W. Min, Y.-W. Kim, H. Kim, Y.-C. Joo, T. Lee, Graphene as an atomically thin barrier to Cu diffusion into Si, Nanoscale. 6 (2014) 7503–7511. https://doi.org/10.1039/C3NR06771H.
[43] C.-L. Lo, M. Catalano, K.K.H. Smithe, L. Wang, S. Zhang, E. Pop, M.J. Kim, Z. Chen, Studies of two-dimensional h-BN and MoS2 for potential diffusion barrier application in copper interconnect technology, Npj 2D Mater Appl. 1 (2017) 42. https://doi.org/10.1038/s41699-017-0044-0.
[44] T. Shen, D. Valencia, Q. Wang, K.-C. Wang, M. Povolotskyi, M.J. Kim, G. Klimeck, Z. Chen, J. Appenzeller, MoS 2 for Enhanced Electrical Performance of Ultrathin Copper Films, ACS Appl. Mater. Interfaces. 11 (2019) 28345–28351. https://doi.org/10.1021/acsami.9b03381.
[45] R. Mehta, S. Chugh, Z. Chen, Enhanced Electrical and Thermal Conduction in Graphene-Encapsulated Copper Nanowires, Nano Lett. 15 (2015) 2024–2030. https://doi.org/10.1021/nl504889t.
[46] C.-L. Lo, K. Zhang, R. Scott Smith, K. Shah, J.A. Robinson, Z. Chen, Large-Area, Single-Layer Molybdenum Disulfide Synthesized at BEOL Compatible Temperature as Cu Diffusion Barrier, IEEE Electron Device Lett. 39 (2018) 873–876. https://doi.org/10.1109/LED.2018.2827061.
[47] S.J. Kim, K. Choi, B. Lee, Y. Kim, B.H. Hong, Materials for Flexible, Stretchable Electronics: Graphene and 2D Materials, Annu. Rev. Mater. Res. 45 (2015) 63–84. https://doi.org/10.1146/annurev-matsci-070214-020901.
[48] S. Chaitoglou, E. Bertran, Effect of temperature on graphene grown by chemical vapor deposition, J Mater Sci. 52 (2017) 8348–8356. https://doi.org/10.1007/s10853-017-1054-1.
[49] Y. Matsui, Y. Nakamura, Y. Shimamoto, M. Hiratani, An oxidation barrier layer for metal–insulator–metal capacitors: ruthenium silicide, Thin Solid Films. 437 (2003) 51–56. https://doi.org/10.1016/S0040-6090(03)00606-0.
[50] T. Kato, T. Tanaka, T. Yajima, K. Uchida, Temperature dependence of resistivity increases induced by thiols adsorption in gold nanosheets, Jpn. J. Appl. Phys. 60 (2021) SBBH13. https://doi.org/10.35848/1347-4065/abd6de.
[51] J. Correa-Puerta, V. Del Campo, R. Henríquez, P. Häberle, Resistivity of thiol-modified gold thin films, Thin Solid Films. 570 (2014) 150–154. https://doi.org/10.1016/j.tsf.2014.09.033.
[52] W.C. Bigelow, D.L. Pickett, W.A. Zisman, OLEOPHOBIC MONOLAYERS2 I. FILMS ADSORBED FROM SOLUTION IN NON-POLAR LIQUIDS, (n.d.).
[53] A. Ulman, Formation and Structure of Self-Assembled Monolayers, Chem. Rev. 96 (1996) 1533–1554. https://doi.org/10.1021/cr9502357.
[54] J.K. Ahn, S.J. Oh, H. Park, Y. Song, S.J. Kwon, H.-B. Shin, Vapor-phase deposition-based self-assembled monolayer for an electrochemical sensing platform, AIP Advances. 10 (2020) 045213. https://doi.org/10.1063/1.5144845.
[55] D.M. Spori, N.V. Venkataraman, S.G.P. Tosatti, F. Durmaz, N.D. Spencer, S. Zürcher, Influence of Alkyl Chain Length on Phosphate Self-Assembled Monolayers, Langmuir. 23 (2007) 8053–8060. https://doi.org/10.1021/la700474v.
[56] J.C. Love, L.A. Estroff, J.K. Kriebel, R.G. Nuzzo, G.M. Whitesides, Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology, Chem. Rev. 105 (2005) 1103–1170. https://doi.org/10.1021/cr0300789.
[57] L.H. Dubois, R.G. Nuzzo, Synthesis, Structure, and Properties of Model Organic Surfaces, Annu. Rev. Phys. Chem. 43 (1992) 437–463. https://doi.org/10.1146/annurev.pc.43.100192.002253.
[58] S.-E. Lee, J. Park, J. Lee, E.G. Lee, C. Im, H. Na, N.-K. Cho, K.-H. Lim, Y.S. Kim, Surface-Functionalized Interfacial Self-Assembled Monolayers as Copper Electrode Diffusion Barriers for Oxide Semiconductor Thin-Film Transistor, ACS Appl. Electron. Mater. 1 (2019) 430–436. https://doi.org/10.1021/acsaelm.8b00132.
[59] P.E. Laibinis, G. Whitesides, Self-AssembledMonolayersof n-Alkanethiolateson Copper Are Barrier Films That Protectthe Metal againstOxidationby Airr, (n.d.).
[60] N.K. Chaki, K. Vijayamohanan, Self-assembled monolayers as a tunable platform for biosensor applications, Biosensors and Bioelectronics. 17 (2002) 1–12. https://doi.org/10.1016/S0956-5663(01)00277-9.
[61] K.L. Prime, G.M. Whitesides, Self-Assembled Organic Monolayers: Model Systems for Studying Adsorption of Proteins at Aurfaces, Science. 252 (1991) 1164–1167. https://doi.org/10.1126/science.252.5009.1164.
[62] J. Sagiv, Organized monolayers by adsorption. 1. Formation and structure of oleophobic mixed monolayers on solid surfaces, J. Am. Chem. Soc. 102 (1980) 92–98. https://doi.org/10.1021/ja00521a016.
[63] I. Zyulkov, V. Madhiwala, E. Voronina, M. Snelgrove, J. Bogan, R. O’Connor, S. De Gendt, S. Armini, Area-Selective ALD of Ru on Nanometer-Scale Cu Lines through Dimerization of Amino-Functionalized Alkoxy Silane Passivation Films, ACS Appl. Mater. Interfaces. 12 (2020) 4678–4688. https://doi.org/10.1021/acsami.9b14596.
[64] D. Bobb-Semple, K.L. Nardi, N. Draeger, D.M. Hausmann, S.F. Bent, Area-Selective Atomic Layer Deposition Assisted by Self-Assembled Monolayers: A Comparison of Cu, Co, W, and Ru, Chem. Mater. 31 (2019) 1635–1645. https://doi.org/10.1021/acs.chemmater.8b04926.
[65] G.N. Parsons, R.D. Clark, Area-Selective Deposition: Fundamentals, Applications, and Future Outlook, Chem. Mater. 32 (2020) 4920–4953. https://doi.org/10.1021/acs.chemmater.0c00722.
[66] J. Sánchez-Bodón, J. Andrade Del Olmo, J.M. Alonso, I. Moreno-Benítez, J.L. Vilas-Vilela, L. Pérez-Álvarez, Bioactive Coatings on Titanium: A Review on Hydroxylation, Self-Assembled Monolayers (SAMs) and Surface Modification Strategies, Polymers. 14 (2021) 165. https://doi.org/10.3390/polym14010165.
[67] F.D. Osterholtz, E.R. Pohl, Kinetics of the hydrolysis and condensation of organofunctional alkoxysilanes: a review, Journal of Adhesion Science and Technology. 6 (1992) 127–149. https://doi.org/10.1163/156856192X00106.
[68] D.K. Schwartz, M ECHANISMS AND K INETICS OF S ELF -A SSEMBLED M ONOLAYER F ORMATION, Annu. Rev. Phys. Chem. 52 (2001) 107–137. https://doi.org/10.1146/annurev.physchem.52.1.107.
[69] Y. Dufil, V. Gadenne, P. Carrière, J.-M. Nunzi, L. Patrone, Growth and organization of (3-Trimethoxysilylpropyl) diethylenetriamine within reactive amino-terminated self-assembled monolayer on silica, Applied Surface Science. 508 (2020) 145210. https://doi.org/10.1016/j.apsusc.2019.145210.
[70] M. Singh, N. Kaur, E. Comini, The role of self-assembled monolayers in electronic devices, J. Mater. Chem. C. 8 (2020) 3938–3955. https://doi.org/10.1039/D0TC00388C.
[71] B.K. Coltrain, C.J.T. Landry, J.M. O’Reilly, A.M. Chamberlain, G.A. Rakes, J.S. Sedita, L.W. Kelts, M.R. Landry, V.K. Long, Role of trialkoxysilane functionalization in the preparation of organic-inorganic composites, Chem. Mater. 5 (1993) 1445–1455. https://doi.org/10.1021/cm00034a014.
[72] J.D. Le Grange, J.L. Markham, C.R. Kurkjian, Effects of surface hydration on the deposition of silane monolayers on silica, Langmuir. 9 (1993) 1749–1753. https://doi.org/10.1021/la00031a023.
[73] S.R. Wasserman, Y.T. Tao, G.M. Whitesides, Structure and reactivity of alkylsiloxane monolayers formed by reaction of alkyltrichlorosilanes on silicon substrates, Langmuir. 5 (1989) 1074–1087. https://doi.org/10.1021/la00088a035.
[74] B. Bhushan, K.J. Kwak, S. Gupta, S.C. Lee, Nanoscale adhesion, friction and wear studies of biomolecules on silane polymer-coated silica and alumina-based surfaces, J. R. Soc. Interface. 6 (2009) 719–733. https://doi.org/10.1098/rsif.2008.0398.
[75] S. Lee, T. Ishizaki, N. Saito, O. Takai, Effect of Reaction Temperature on Growth of Organosilane Self-Assembled Monolayers, Jpn. J. Appl. Phys. 47 (2008) 6442–6447. https://doi.org/10.1143/JJAP.47.6442.
[76] P. Silberzan, L. Leger, D. Ausserre, J.J. Benattar, Silanation of silica surfaces. A new method of constructing pure or mixed monolayers, Langmuir. 7 (1991) 1647–1651. https://doi.org/10.1021/la00056a017.
[77] Y. Sun, M. Yanagisawa, M. Kunimoto, M. Nakamura, T. Homma, Estimated phase transition and melting temperature of APTES self-assembled monolayer using surface-enhanced anti-stokes and stokes Raman scattering, Applied Surface Science. 363 (2016) 572–577. https://doi.org/10.1016/j.apsusc.2015.12.035.
[78] S.B. Ulapane, N.J.B. Kamathewatta, H.M. Ashberry, C.L. Berrie, Controlled Electroless Deposition of Noble Metals on Silicon Substrates Using Self-Assembled Monolayers as Molecular Resists To Generate Nanopatterned Surfaces for Electronics and Plasmonics, ACS Appl. Nano Mater. 2 (2019) 7114–7125. https://doi.org/10.1021/acsanm.9b01641.
[79] H. Ishii, K. Sugiyama, E. Ito, K. Seki, Energy Level Alignment and Interfacial Electronic Structures at Organic/Metal and Organic/Organic Interfaces, Adv. Mater. 11 (1999) 605–625. https://doi.org/10.1002/(SICI)1521-4095(199906)11:8<605::AID-ADMA605>3.0.CO;2-Q.
[80] Z. Hu, Z. Zhong, K. Zhang, Z. Hu, C. Song, F. Huang, J. Peng, J. Wang, Y. Cao, Dipole formation at organic/metal interfaces with pre-deposited and post-deposited metal, NPG Asia Mater. 9 (2017) e379–e379. https://doi.org/10.1038/am.2017.56.
[81] E. Asenath Smith, W. Chen, How To Prevent the Loss of Surface Functionality Derived from Aminosilanes, Langmuir. 24 (2008) 12405–12409. https://doi.org/10.1021/la802234x.
[82] H. Schiff, Mittheilungen aus dem Universitätslaboratorium in Pisa: Eine neue Reihe organischer Basen, Ann. Chem. Pharm. 131 (1864) 118–119. https://doi.org/10.1002/jlac.18641310113.
[83] S. Fan, B. Peng, R. Yuan, D. Wu, X. Wang, J. Yu, F. Li, A novel Schiff base-containing branched polysiloxane as a self-crosslinking flame retardant for PA6 with low heat release and excellent anti-dripping performance, Composites Part B: Engineering. 183 (2020) 107684. https://doi.org/10.1016/j.compositesb.2019.107684.
[84] Y. Guo, M. Zhang, Z. Liu, X. Tian, S. Zhang, C. Zhao, H. Lu, Modeling and Optimizing the Synthesis of Urea-formaldehyde Fertilizers and Analyses of Factors Affecting these Processes, Sci Rep. 8 (2018) 4504. https://doi.org/10.1038/s41598-018-22698-8.
[85] P.M. Dietrich, S. Glamsch, C. Ehlert, A. Lippitz, N. Kulak, W.E.S. Unger, Synchrotron-radiation XPS analysis of ultra-thin silane films: Specifying the organic silicon, Applied Surface Science. 363 (2016) 406–411. https://doi.org/10.1016/j.apsusc.2015.12.052.
[86] T. Schneider, K. Artyushkova, J.E. Fulghum, L. Broadwater, A. Smith, O.D. Lavrentovich, Oriented Monolayers Prepared from Lyotropic Chromonic Liquid Crystal, Langmuir. 21 (2005) 2300–2307. https://doi.org/10.1021/la047788+.
[87] D. Ivnitski, K. Artyushkova, P. Atanassov, Surface characterization and direct electrochemistry of redox copper centers of bilirubin oxidase from fungi Myrothecium verrucaria, Bioelectrochemistry. 74 (2008) 101–110. https://doi.org/10.1016/j.bioelechem.2008.05.003.
[88] P.M. Dietrich, C. Streeck, S. Glamsch, C. Ehlert, A. Lippitz, A. Nutsch, N. Kulak, B. Beckhoff, W.E.S. Unger, Quantification of Silane Molecules on Oxidized Silicon: Are there Options for a Traceable and Absolute Determination?, Anal. Chem. 87 (2015) 10117–10124. https://doi.org/10.1021/acs.analchem.5b02846.
[89] R.A. Shircliff, P. Stradins, H. Moutinho, J. Fennell, M.L. Ghirardi, S.W. Cowley, H.M. Branz, I.T. Martin, Angle-Resolved XPS Analysis and Characterization of Monolayer and Multilayer Silane Films for DNA Coupling to Silica, Langmuir. 29 (2013) 4057–4067. https://doi.org/10.1021/la304719y.
[90] M.R. Alexander, R.D. Short, F.R. Jones, W. Michaeli, C.J. Blomfield, A study of HMDSOrO2 plasma deposits using a high-sensitivity and -energy resolution XPS instrument: curve fitting of the Si 2p core level, (1999).
[91] J. Zhang, D.S. Wavhal, E.R. Fisher, Mechanisms of SiO2 film deposition from tetramethylcyclotetrasiloxane, dimethyldimethoxysilane, and trimethylsilane plasmas, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 22 (2004) 201–213. https://doi.org/10.1116/1.1635392.
[92] Z. Fan, C. Zhi, L. Wu, P. Zhang, C. Feng, L. Deng, B. Yu, L. Qian, UV/Ozone-Assisted Rapid Formation of High-Quality Tribological Self-Assembled Monolayer, Coatings. 9 (2019) 762. https://doi.org/10.3390/coatings9110762.
[93] J. Soethoudt, S. Crahaij, T. Conard, A. Delabie, Impact of SiO 2 surface composition on trimethylsilane passivation for area-selective deposition, J. Mater. Chem. C. 7 (2019) 11911–11918. https://doi.org/10.1039/C9TC04091A.
[94] S. Liu, Y. Wang, Application of AFM in microbiology: a review, Scanning. 32 (2010) 61–73. https://doi.org/10.1002/sca.20173.
[95] J. Iwasa, K. Kumazawa, K. Aoyama, H. Suzuki, S. Norimoto, T. Shimoaka, T. Hasegawa, In Situ Observation of a Self-Assembled Monolayer Formation of Octadecyltrimethoxysilane on a Silicon Oxide Surface Using a High-Speed Atomic Force Microscope, J. Phys. Chem. C. 120 (2016) 2807–2813. https://doi.org/10.1021/acs.jpcc.5b11460.
[96] H. Liu, M. Fu, Z. Wang, S. Pang, H. Zhu, C. Zhang, L. Ming, X. Liu, M. Ding, Y. Fu, Thermal Stability of Self-Assembled 3-Aminopropyltrimethoxysilane Diffusion Barrier Terminated by Carboxyl Groups, Applied Sciences. 12 (2022) 11098. https://doi.org/10.3390/app122111098.
[97] I. Solano, P. Parisse, F. Gramazio, O. Cavalleri, G. Bracco, M. Castronovo, L. Casalis, M. Canepa, Spectroscopic ellipsometry meets AFM nanolithography: about hydration of bio-inert oligo(ethylene glycol)-terminated self assembled monolayers on gold, Phys. Chem. Chem. Phys. 17 (2015) 28774–28781. https://doi.org/10.1039/C5CP04028K.
[98] B. Oberleitner, A. Dellinger, M. Déforet, A. Galtayries, A.-S. Castanet, V. Semetey, A facile and versatile approach to design self-assembled monolayers on glass using thiol–ene chemistry, Chem. Commun. 49 (2013) 1615. https://doi.org/10.1039/c2cc38425f.
[99] R. Michel, D.G. Castner, Advances in time-of-flight secondary ion mass spectrometry analysis of protein films, Surf. Interface Anal. 38 (2006) 1386–1392. https://doi.org/10.1002/sia.2382.
[100] M.P. Seah, The quantitative analysis of surfaces by XPS: A review, Surf. Interface Anal. 2 (1980) 222–239. https://doi.org/10.1002/sia.740020607.
[101] B.S. Sahu, A. Kapoor, P. Srivastava, O.P. Agnihotri, S.M. Shivaprasad, Study of thermally grown and photo-CVD deposited silicon oxide–silicon nitride stack layers, Semicond. Sci. Technol. 18 (2003) 670–675. https://doi.org/10.1088/0268-1242/18/7/312.
[102] J. Boudaden, R.S.-C. Ho, P. Oelhafen, A. Schüler, C. Roecker, J.-L. Scartezzini, Towards coloured glazed thermal solar collectors, Solar Energy Materials and Solar Cells. 84 (2004) 225–239. https://doi.org/10.1016/j.solmat.2004.02.042.
[103] R. Tan, Y. Azuma, I. Kojima, Comparative study of the interfacial characteristics of sputter-deposited HfO2 on native SiO2/Si (100) usingin situ XPS, AES and GIXR, Surf. Interface Anal. 38 (2006) 784–788. https://doi.org/10.1002/sia.2263.
[104] F.J. Grunthaner, P.J. Grunthaner, R.P. Vasquez, B.F. Lewis, J. Maserjian, A. Madhukar, Local atomic and electronic structure of oxide/GaAs and SiO 2 /Si interfaces using high‐resolution XPS, Journal of Vacuum Science and Technology. 16 (1979) 1443–1453. https://doi.org/10.1116/1.570218.
[105] M.Y. Bashouti, J. Ristein, H. Haick, S. Christiansen, A Non-Oxidative Approach Towards Hybrid Silicon Nanowire- Based Solar Cell Heterojunctions, Hybrid Materials. 1 (2014). https://doi.org/10.2478/hyma-2013-0002.
[106] S. Contarini, S.P. Howlett, C. Rizzo, B.A. De Angelis, XPS study on the dispersion of carbon additives in silicon carbide powders, Applied Surface Science. 51 (1991) 177–183. https://doi.org/10.1016/0169-4332(91)90400-E.
[107] K.J. Boyd, D. Marton, S.S. Todorov, A.H. Al‐Bayati, J. Kulik, R.A. Zuhr, J.W. Rabalais, Formation of C–N thin films by ion beam deposition, Journal of Vacuum Science & Technology A: Vacuum, Surfaces, and Films. 13 (1995) 2110–2122. https://doi.org/10.1116/1.579528.
[108] T.R. Gengenbach, R.C. Chatelier, H.J. Griesser, Correlation of the Nitrogen 1s and Oxygen 1s XPS Binding Energies with Compositional Changes During Oxidation of Ethylene Diamine Plasma Polymers, Surf. Interface Anal. 24 (1996) 611–619. https://doi.org/10.1002/(SICI)1096-9918(19960916)24:9<611::AID-SIA169>3.0.CO;2-7.
[109] H. Min, P.-L. Girard-Lauriault, T. Gross, A. Lippitz, P. Dietrich, W.E.S. Unger, Ambient-ageing processes in amine self-assembled monolayers on microarray slides as studied by ToF-SIMS with principal component analysis, XPS, and NEXAFS spectroscopy, Anal Bioanal Chem. 403 (2012) 613–623. https://doi.org/10.1007/s00216-012-5862-5.
[110] J. Ederer, P. Janoš, P. Ecorchard, J. Tolasz, V. Štengl, H. Beneš, M. Perchacz, O. Pop-Georgievski, Determination of amino groups on functionalized graphene oxide for polyurethane nanomaterials: XPS quantitation vs. functional speciation, RSC Adv. 7 (2017) 12464–12473. https://doi.org/10.1039/C6RA28745J.
[111] K. Sakuma, K. Toriyama, H. Noma, K. Sueoka, N. Unami, J. Mizuno, S. Shoji, Y. Orii, Fluxless bonding for fine-pitch and low-volume solder 3-D interconnections, in: 2011 IEEE 61st Electronic Components and Technology Conference (ECTC), IEEE, Lake Buena Vista, FL, USA, 2011: pp. 7–13. https://doi.org/10.1109/ECTC.2011.5898483.
[112] K. Ahn, S.-Y. Kim, S. Kim, D.-H. Son, S.-H. Kim, S. Kim, J. Kim, S.-J. Sung, D.-H. Kim, J.-K. Kang, Flexible high-efficiency CZTSSe solar cells on stainless steel substrates, J. Mater. Chem. A. 7 (2019) 24891–24899. https://doi.org/10.1039/C9TA08265D.
[113] Y.-L. Chen, Y.-Y. Fang, M.-Y. Lu, P.Y. Keng, S.-Y. Chang, Grain-boundary/interface structures and scatterings of ruthenium and molybdenum metallization for low-resistance interconnects, Applied Surface Science. 629 (2023) 157440. https://doi.org/10.1016/j.apsusc.2023.157440.
[114] J.S. Chawla, F. Gstrein, K.P. O’Brien, J.S. Clarke, D. Gall, Electron scattering at surfaces and grain boundaries in Cu thin films and wires, Phys. Rev. B. 84 (2011) 235423. https://doi.org/10.1103/PhysRevB.84.235423.
[115] S. Dutta, K. Sankaran, K. Moors, G. Pourtois, S. Van Elshocht, J. Bömmels, W. Vandervorst, Z. Tőkei, C. Adelmann, Thickness dependence of the resistivity of platinum-group metal thin films, Journal of Applied Physics. 122 (2017) 025107. https://doi.org/10.1063/1.4992089.
[116] J. Lian, R.Z. Valiev, B. Baudelet, On the enhanced grain growth in ultrafine grained metals, Acta Metallurgica et Materialia. 43 (1995) 4165–4170. https://doi.org/10.1016/0956-7151(95)00087-C.
[117] Y. Shacham-Diamand, T. Osaka, M. Datta, T. Ohba, eds., Advanced Nanoscale ULSI Interconnects: Fundamentals and Applications, Springer New York, New York, NY, 2009. https://doi.org/10.1007/978-0-387-95868-2.
[118] V.D. Patake, C.D. Lokhande, O.S. Joo, Electrodeposited ruthenium oxide thin films for supercapacitor: Effect of surface treatments, Applied Surface Science. 255 (2009) 4192–4196. https://doi.org/10.1016/j.apsusc.2008.11.005.