研究生: |
林東緯 Tung-Wei Lin |
---|---|
論文名稱: |
懸浮式閘極場效應電晶體應用於梳狀致動器之位移感測 Displacement Sensing for Comb-Drive Actuators Using Suspended Gate Field-Effect Transistors |
指導教授: |
陳榮順
Rongshun Chen 侯帝光 Max Ti-Kuang Hou |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 72 |
中文關鍵詞: | 位移感測 、懸浮式閘極 、梳狀致動器 、微機電 |
外文關鍵詞: | displacement sensing, suspended gate, comb-drive actuator, MEMS, field-effect transistor |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究提出之位移量感測機制,乃是利用一具有懸浮式閘極結構之場效應電晶體,整合於微機電系統之中,提供靜電式梳狀致動器之位置迴授訊號。以本研究中提出之懸浮式閘極場效應電晶體進行位移量感測,其優點為架構單純、僅佔少許晶片面積,且易於整合於單晶片系統之中。此感測元件之製程可與積體電路製程相容,有利於進行微機電結構與積體電路之整合。
懸浮式閘極電晶體的操作原理,乃是透過輸出之汲極電流而感測懸浮閘極之位移量。本研究呈現懸浮式閘極電晶體與靜電式梳狀致動器的設計與分析,並對於其運作機制以數值模擬軟體進行驗證。另外,本論文亦針對所提出之系統架構,提出理論模型,以描述不同情況下之電晶體輸出汲極電流與致動器位移的關係。並經過製程架構設計,將懸浮閘極電晶體與靜電梳狀致動器整合於單晶片上,分別以TSMC 2P4M 0.35 um CMOS-MEMS製程與自訂之表面微加工進行實作。
In this study, a displacement sensing mechanism is proposed using suspended gate field-effect transistor (SGFET) and integrated with comb-drive actuators to provide a position feedback signal. By utilizing SGFET, the proposed method has advantages of reduced chip size, simplicity in sensing structure, and compatibility with CMOS-MEMS fabrication process.
The operating principle of SGFET is to sense the displacement of suspended gate via the output drain current. Design and analysis for SGFET and comb-drive actuators are presented. A sensing structure combining an SGFET with a comb-drive actuator is proposed, with two models describing the linear and nonlinear drain current of SGFET. Numerical simulation is carried out to investigate the relationship between drain current of SGFET and displacement of comb-drive actuator. To demonstrate the proposed sensing mechanism, the integrated device on a single chip was implemented using both TSMC 2P4M 0.35 um CMOS-MEMS fabrication process and a customized surface micromachining process.
[1] W. C. Tang, T. H. Nguyen, and R. T. Howe, “Laterally driven polysilicon resonant microstructures,” Sensors and Actuators, A: Physical, vol. 20, pp. 25-32, 1989.
[2] T. Harness and R. R. A. Syms, “Characteristic modes of electrostatic comb-drive X-Y microactuators,” Journal of Micromechanics and Microengineering, vol. 10, pp. 7-14, 2000.
[3] C. Marxer, P. Griss, and N. F. de Rooij, “Variable optical attenuator based on silicon micromechanics,” IEEE Photonics Technology Letters, vol. 11, pp. 233-235, 1999.
[4] W. H. Juan and S. W. Pang, “High-aspect-ratio Si vertical micromirror arrays for optical switching,” Journal of Microelectromechanical Systems, vol. 7, pp. 207-213, 1998.
[5] M. A. Haque, M. T. A. Saif, “Microscale materials testing using MEMS actuators,” Journal of Microelectromechanical Systems, vol. 10, pp. 146-152, 2001.
[6] P. Cheung, R. Horowitz, and R. T. Howe, “Identification, position sensing, and control of an electrostatically-driven polysilicon microactuator,” Proceedings of the IEEE Conference on Decision and Control, vol. 4, pp. 3545-3550, 1995.
[7] Y. Sun, D. Piyabongkarn, A. Sezen, B. J. Nelson, and R. Rajamani, “A high-aspect-ratio two-axis electrostatic microactuator with extended travel range,” Sensors and Actuators, A: Physical, vol. 102, pp. 49-60, 2002.
[8] A. A. Kuijpers, R. J. Wiegerink, G. J. M. Krijnen, T. S. J. Lammerink, and M. Elwenspoek, “Capacitive long-range position sensor for microactuators,” Proceedings of the IEEE International Conference on Micro Electro Mechanical Systems, pp. 544-547, 2004.
[9] B. Borovic, C. Hong, A. Q. Liu, L. Xie, and F. L. Lewis, “Control of a MEMS optical switch,” Proceedings of the IEEE Conference on Decision and Control, pp. 3039-3044, 2004.
[10] L. Wang, J. M. Dawson, L. A. Hornak, P. Famouri, and R. Ghaffarian, “Real-time translational control of a MEMS comb resonator,” IEEE Transactions on Aerospace and Electronic Systems, vol. 40, pp. 567-575, 2004.
[11] I. H. Song and P. K. Ajmera, “Differential laterally movable gate FETs (LMGFETs) as a position sensor,” Proceedings of SPIE - the International Society for Optical Engineering, vol. 5389, pp. 267-273, 2004.
[12] H. Toshiyoshi, M. Goto, M. Mita, H. Fujita, D. Kobayashi, G. Hashiguchi, J. Endo, and Y. Wada, “Fabrication of micromechanical tunneling probes and actuators on a silicon chip,” Japanese Journal of Applied Physics, vol. 38, pp 7185-7189, 1999.
[13] R. Legtenberg, A. W. Groeneveld, and M. Elwenspoek, “Comb-drive actuators for large displacements,” Journal of Micromechanics and Microengineering, vol. 6, pp. 320-329, 1996.
[14] J. D. Grade, H. Jermanl, and T. W. Kenny, ”Design of large deflection electrostatic actuators,” Journal of Microelectromechanical Systems, vol. 12, pp. 335-343, 2003.
[15] G. Zhou and P. Guangya, “Tilted folded-beam suspension for extending the stable travel range of comb-drive actuators,” Journal of Micromechanics and Microengineering, vol. 13, pp. 178-183, 2003.
[16] H. C. Nathanson, W. E. Newell, R. A. Wickstrom, and J. R. Jr. Davis, “The resonant gate transistor,” IEEE Transactions on Electron Devices, vol. 14, pp. 117-133, 1967.
[17] A. Yoshikawa and T. Suzuki, “Properties of a movable-gate-field-effect structure as an electromechanical sensor,” Journal of Acoustical Society of America, vol. 64, pp. 725-730, 1978.
[18] J. T. Suminto and W. H. Ko, “Pressure-sensitive insulated gate field-effect transistor (PSIGFET),” Sensors and Actuators, A: Physical, vol. 21, pp. 126-132, 1990.
[19] R. S. Jachowicz and Z. M. Azgin, “FET pressure sensor and iterative method for modelling of the device,” Sensors and Actuators, A: Physical, vol. 97-98, pp. 369-378, 2002.
[20] E. Hynes, M. O'Neill, D. McAuliffe, H. Berney, W. A. Lane, G. Kelly, M. Hill, “Development and characterization of a surface micromachined FET pressure sensor on a CMOS process,” Sensors and Actuators, A: Physical, vol. 76, pp. 283-292, 1999.
[21] M. Fernandez-Bolanos, N. Abele, V. Pott, D. Bouvet, G-A. Racine, J. M. Quero, A. M. Ionescu, “Polyimide sacrificial layer for SOI SG-MOSFET pressure sensor,” Microelectronic Engineering, vol. 83, pp. 1185-1188, 2006.
[22] C. Steinbrüchel, “The mechanical field effect transistor: A new force sensor,” The Journal of Vacuum Science and Technology A, vol. 7, pp. 847-849, 1989.
[23] J. A. Plaza, M. A. Benitez, J. Esteve, and E. L. Tamayo, “New FET accelerometer based on surface micromachining,” Sensors and Actuators, A: Physical, vol. 61, pp. 342-345, 1997.
[24] Y. Yee, J. U. Bu, K. Chun, and J. W. Lee, “An integrated digital silicon micro-accelerometer with MOSFET-type sensing elements,” Journal of Micromechanics and Microengineering, vol. 10, pp. 350-358, 2000.
[25] P. K. Ajmera, I. H. Song, “Laterally movable gate FET (LMGFET) for on-chip integration of MEMS with electronics,” Proceedings of SPIE - the International Society for Optical Engineering, vol. 4334, pp. 30-37, 2001.
[26] W. Olthuis, “Chemical and physical FET-based sensors or variations on an equation,” Sensors and Actuators, B: Chemical, vol.105, pp. 96-103, 2005.
[27] I. Eisele and M. Burgmair, “Work function based field effect devices for gas sensing,” Proceedings of the Conference on Optoelectronic and Microelectronic Materials and Devices, pp. 285-291, 2000.
[28] R. S. Muller, T. I. Kamins, and M. Chan, Device Electronics for Integrated Circuits, John Wiley & Sons, 3rd ed., 2003.
[29] S. M. Sze, Semiconductor Devices, Physics and Technology, John Wiley & Sons, 1985.
[30] H. Xie, Y. Pan, and G. K. Fedder, “A CMOS-MEMS mirror with curled-hinge comb drives,” Journal of Microelectromechanical Systems, vol. 12, pp. 450-457, 2003.