研究生: |
王郁惠 Yu-Hui Wang |
---|---|
論文名稱: |
自我穩定之無環路圖形塗色演算法 Self-Stabilizing Acyclic Colorings of Graphs |
指導教授: |
黃興燦
Shing-Tsaan Huang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2003 |
畢業學年度: | 93 |
語文別: | 中文 |
論文頁數: | 33 |
中文關鍵詞: | 自我穩定 、分散式演算法 、無環路圖形塗色 |
外文關鍵詞: | self-stabilization, distributed algorithm, acyclic colorings |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文提出兩個自我穩定(Self-stabilizing)的圖形之無環路塗色(Acyclic Colorings of Graph)演算法,解決分散式系統中的無環路塗色問題。第一個演算法用在有向無環路圖形(Directed Acyclic Graph)上,第二個演算法則用在無K4子圖的圖形(K4-free Graph)上。
第一個演算法用在一般的圖形(General Graph)上時,它最多需要使用1+D/2種顏色;在完全二裂圖形(Complete Bipartite Graph)上,它只需使用2種顏色;而在平面圖形(Planar Graph)上,它只需使用3種顏色。第二個演算法則用在無K4子圖的圖形(K4-free Graph)上,圖形中需有一個特殊點(special node),其他個點均互不可分辨(nuiform),此演算法只需使用2種顏色。
This thesis proposes two self-stabilizing algorithms for acyclic colorings of graphs. An acyclic coloring of a graph G is a coloring of the vertices of G such that the vertices with the same color in G induces an acyclic subgraph. The first algorithm we proposed needs 2 colors for a complete bipartite graph, or less than 1+D/2 colors for a general graph, where D is the degree of G. Both graphs must be acyclic oriented in advance. In some special acyclic orientation, it needs only 3 colors for a planar graph, or a K3,3-free or K5-free graph. The second algorithm we proposed is for a K4-free and rooted graph, and it needs only 2 colors.
[A85] T. Asano, An approach to the subgraph homoeomorphism problem, Theoret. Comput. Sci 38 (1985) 249-267.
[C00] Z.-Z. Chen, Efficient algorithms for acyclic colorings of graphs, Theoret. Comput. Sci. 230 (2000) 75-95.
[CH96] Z.-Z. Chen, X. He, Parallel complexity of partitioning a planar graph into vertex-induced forests, Discrete Appl. Math. 69 (1996) 183-198.
[CK69] G. Chartrand and H. V. Kronk, The point-arboricity of a planar graph, J. London Math. Soc. 44 (1969) 612-616.
[CKW68] G. Chartrand, H. V. Kronk and C.E. Wall, The point-arboricity of a graph, Israel J. Math. 6 (1968) 169-175.
[CL86] G. Chartrand and L. Lesniak, Graphs and digraphs (Wadsworth, Belmont, 2nd ed., 1986)
[D74] E.W. Dijkstra, Self-stabilizing systems in the spite of distributed control, Comm. ACM 17 (1974) 643-644.
[DDT99] S.K. Das, A.K. Datta and S. Tixeuil, Self-stabilizing algorithms in DAG structured networks, Parallel Processing Letters. Vol. 9, No. 4 (1999) 563-574.
[DIM95] S. Dolev, A. Israeli, and S. Moran. Uniform dynamic self-stabilizing leader election, IEEE Trans. On Parallel and Distributed Systems. Vol. 8, No. 4, April 1995.
[GJ01] M. Gradinariu and C. Johnen, Self-stabilizing neighborhood unique naming under unfair scheduler, in: Proc. of the 7th International Euro-Par Conference on Parallel processing (Euro-Par 2001). Manchester, August, 2001. also in LNCS 2150, pages 458-465.
[HWT94] S. T. Huang and L. C. Wuu, and M. S. Tsai, Distributed execution model for self-stabilizing systems, Proceedings of the 14th International Conference on Distributed Computing System, 1994.
[GK93] S. Ghosh and M. H. Karaata. A self-stabilizing algorithm for coloring planar graphs, Distributed Computing, 7:55-59, 1993.
[KM92] A Kézdy, P. McGuinness, Sequential and parallel algorithms to find a K5 minor, in: Proc. 3rd ACM-SIAM Symp. on Discrete Algorithms, SIAM, (1992) 345-356.
[L77] Liu, Chung Laung. Elements of discrete mathematics (McGraw-Hill, Inc 1977)
[Rnt algorithms for vertex arboricity of planar graphs, in: Proc. 15th Internat. Conf. On Foundations of Software Technology and Theoretical Computer Science, Lecture Notes in Computer Science, Vol. 1026, Springer, Berlin, (1995) 37-51.
[TS92] K. Thulasiraman and M.N.S. Swamy, Graphs: theory and algorithms (A Wiley-Interscience publication, 1992)