研究生: |
徐啟文 Hsu, Chi-Wen |
---|---|
論文名稱: |
架設可操作電路-量子電動力學實驗的微波量測系統 Setup microwave measurement system for circuit-Quantum electrodynamics experiment |
指導教授: |
陳正中
Chen, Jeng-Chung |
口試委員: |
許耀銓
Hoi, Io-Chun 陳永富 Chen, Yung-Fu 吳憲昌 Wu, Cen-Shawn |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 物理學系 Department of Physics |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 83 |
中文關鍵詞: | 腔-量子電動力學 、電路-量子電動力學 、共面波導 、三維共振腔 |
外文關鍵詞: | cavity-QED, circuit-QED, coplanar waveguide, 3D cavity |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
近幾年中,量子電腦與量子計算當今重要的科技發展方向,而量子科技的核心是量子位元件的研製。量子位元的操作需靠人造原子與光子交互作用,其量子狀態的操作需在超低溫環境(大約10 mK)下進行,以及精密微波操控技術。本論文的目的主要再架設量測量子位元的低溫量測系統與共振腔設計。
本篇論文中的實驗系統使用稀釋致冷機降溫,經過多個遞減的溫度層將系統溫度降低至10 mK的樣品空間,過程中為了減少熱傳導及雜訊進入也在輸入端安裝了衰減器。當微波訊號從10 mK輸出時,避免雜訊干擾先使用了超導傳輸線再接上了低溫放大器進行第一次放大使訊號與雜訊產生區隔,之後在系統外室溫處在接上室溫放大器進行二次放大。根據人造原子製程的普遍躍遷頻段,將實驗中所使用的量測系統工作頻段設定在4~12 GHz。低溫放大器為微波訊號輸出後,最有可能影響訊號正確性的元件,而放大器的雜訊溫度(noise temperature)大約為 5K,因此量測系統上會一個大小約為 -130 dB的白雜訊,其大小和單光子相近
將人造原子置於共振腔內是為了增強與光子之間的耦合效應,而在本篇論文分別針對二維共面波導的測量以及三維共振腔的理論設計、利用3D電磁模擬軟體模擬和實驗量測。實驗中的二維共面波導共振頻率為8.24 GHz,樣品為半導體人造原子,目前實驗僅針對 T=10 mK 下腔體的品質因子和共振頻率進行測量。而為了涵蓋系統4~12 GHz的工作頻段,我設計了四種共振頻率且分別有銅和鋁兩種不同材質的三維共振腔。目前在三組三維共振腔的低溫量測中,本篇論文所設計的腔體其光子損耗率 κ/2π 達到30 kHz已具被使光子與人造原子產生強耦合作用的條件,因此我認為此量測系統具有能讓人造原子與光子產生強耦合的電磁場環境。
In recent years, quantum computers and quantum computing have become the important scientific and technological development directions and the development of Quantum bit (qubit) is the core of the quantum technology. The operation of qubits depends on the interaction between artificial atoms and photons, the quantum state needs to be operate in an ultra-low temperature environment (approximately 10 mK) and precision microwave manipulation techniques. The purpose of this dissertation is mounting the cryogenic measurement system for qubits experiment and the resonant cavity design.
The experiment in the thesis uses a dilution refrigerator as a cryogenic system to lower the system temperature to 10 mK sample space through the multiple descending temperature layers. In the process, mount attenuator at the input to reduce heat conduction and noise. When the microwave signal is output from the 10 mK space, superconducting transmission line use first to avoid the noise interference, then the low temperature amplifier performs the first amplification to separate the signal from noise, and then the room temperature amplifier outside the fridge perform the secondary amplification. According to the general transition frequency of the artificial atom process, the operating frequency band of the measurement system is set at 4~12 GHz. The low temperature amplifier is a device most likely to affect the signal. Therefore, we use a 50 ohms resistor to measure the noise temperature from the low temperature amplifier, and estimate the noise.
In order to enhance the coupling effect with photons, we put the artificial atoms in the resonant cavity. In this article, we focus on the measurement of two-dimensional coplanar waveguide (thanks to dr. J.W. Wang, a former laboratory member for the design and the simulation data) and design, simulate by HFSS and measurement of 3D cavity. The resonant frequency of the two-dimensional coplanar waveguide in the experiment is 8.24 GHz, and the sample is a semiconductor artificial atom, the experiment only measures the quality factor and resonant frequency of the cavity under T=10 mK. In order to cover the 4 to 12 GHz operating frequency band of the system, I designed 3D cavity with four resonance frequencies with copper and aluminum two different materials. At present, three groups of low temperature data have been measured, the photon loss rate of the 3D cavity in this paper compared with the literature that has achieved a strong coupling effect, we considered that there is an electromagnetic field environment that can make artificial atoms and photons strongly coupled.
[1] E.T. Jaynes and F. W. Cummings . Comparison of quantum and semiclassical radiation theories with application to the beam maser. Proceedings of the IEEE, 51:89-109, 1963.
[2] G. Khitrova, H. M. Gibbs, M. Kira, S. W. Koch & A. Scherer. Vacuum Rabi splitting in semiconductors. Nature Physics, 2:81-90, 2006.
[3] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R.- S. Huang, J. Majer, S. Kumar, S. M. Girvin & R. J. Schoelkopf. Strong coupling of a single photon to a superconducting qubit using circuit quantum electrodynamics. Nature Physics, 431:162, 2004.
[4] R. J. Schoelkopf and S. M. Girvin. Wiring up quantum systems. Nature Physics, 451:664-669, 2008.
[5] G. Andersson. Circuit quantum electrodynamics with a transmon qubit in a 3D cavity, Physik Department, Technische Universität München Ordinarius 2015.
[6] X. Mi, J. V. Cady, D. M. Zajac, P. W. Deelman, J. R. Petta,. Strong coupling of a single electron in silicon to a microwave photon. Science, aal2469, 2016.
[7] K. Geerlings, S. Shankar, E. Edwards, L. Frunzio, R. J. Schoelkopf, and M. H. Devoret. Improving the quality factor of microwave compact resonators by optimizing their geometrical parameters. Applied Physics Letters, 100:192601, 2012.
[8] J. M. Gérard, B. Sermage, B. Gayral, B. Legrand, E. Costard, and V. Thierry-Mieg. Enhanced spontaneous emission by quantum boxes in a monolithic optical microcavity. Physical review letters, 81:1110,1998.
[9] M. Bayer, T. L. Reinecke, F. Weidner, A. Larionov, A. McDonald, and A. Forchel. Inhibition and enhancement of the spontaneous emission of quantum dots in structured microresonators. Physical review letters 86:3168, 2001.
[10] 曾彥鈞. 高品質因子與低模態體積光子晶體微共振腔之設計與製作. 中央大學光電科學研究所學位論文, 1-60, 2007.
[11] Io-Chun, Hoi. (2013). Quantum Optics with Propagating Microwaves in Superconducting Circuits, Chalmers University of Technology, 2013.
[12] A. Wallraff, A. Stockklauser, T. Ihn, J. R. Petta, and A. Blais. Comment on Vacuum Rabi splitting in a semiconductor circuit QED system. Physical review letters, 111:249701, 2013.
[13] H. Toida, T. Nakajima, and S. Komiyama. Vacuum Rabi splitting in a semiconductor circuit QED system. Physical review letters, 110:066802, 2013
[14] K. D. Petersson, L. W. McFaul, M. D. Schroer, M. Jung, J. M. Taylor, A. A. Houck & J. R. Petta. Circuit quantum electrodynamics with a spin qubit. Nature Physics, 490:380, 2012.
[15] T. Frey, P. J. Leek, M. Beck, A. Blais, T. Ihn, K. Ensslin, and A. Wallraff. Dipole coupling of a double quantum dot to a microwave resonator. Physical review letters, 108:046807, 2012
[16] H. Hanhee Paik, D. I. Schuster, Lev S. Bishop, G. Kirchmair, G. Catelani, A. P. Sears, B. R. Johnson, M. J. Reagor, L. Frunzio, L. I. Glazman, S. M. Girvin, M. H. Devoret, and R. J. Schoelkopf. Observation of high coherence in Josephson junction qubits measured in a three-dimensional circuit QED architecture. Physical review letters, 107:240501, 2011.
[17] Wei-Cheng. Kong, Guang-Wei Deng, Shu-Xiao Li, Hai-Ou Li, Gang Cao, Ming Xiao, and Guo-Ping Guoa). Introduction of DC line structures into a superconducting microwave 3D cavity. Review of Scientific Instruments, 86:023108, 2015.
[18] T. C. White, J. Y. Mutus, J. Dressel, J. Kelly, R. Barends, E. Jeffrey, D. Sank, A. Megrant, B. Campbell, Yu Chen, Z. Chen, B. Chiaro, A. Dunsworth, I-C Hoi, C Neill, P. J. J O’Malley, P. Roushan, A. Vainsencher, J. Wenner, A. N. Korotkov & John M. Martinis. Preserving entanglement during weak measurement demonstrated with a violation of the Bell-Leggett-Garg inequality, University of California, 2015.
[19] K. L. Denis, N. T. Caob, D. T. Chussa, J. Eimerc, J. R. Hinderksa, W.‐T. Hsieha, S. H. Moseleya, T. R. Stevensona, D. J. Talleyb, K. U.‐yena, and E. J. Wollacka. Fabrication of an Antenna‐Coupled Bolometer for Cosmic Microwave Background Polarimetry. AIP Conference Proceedings, 1185:371, 2009.
[20] Mingyun Yuan, Vibhor Singh, Yaroslav M. Blanter & Gary A. Steele,. Large cooperativity and microkelvin cooling with a three-dimensional optomechanical cavity. Nature communications, 6:8491, 2015.
[21] David J. Griffiths. Introduction to Electrodynamics. Pearson College Div, 1962.