簡易檢索 / 詳目顯示

研究生: 蕭閔璇
Hsiao, Min-Hsuan
論文名稱: 燃料電池用石墨烯強化之熱固性及熱塑性奈米複合材料雙極板之製備及其性質之研究
Preparation and Characterization of Graphene Reinforced Thermoset/Thermoplastic Nanocomposite Bipolar Plate for Fuel Cells
指導教授: 馬振基
Ma, Chen-Chi
口試委員: 馬振基
M.Ma, Chen-Chi
江金龍
陳景祥
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 241
中文關鍵詞: 燃料電池雙極板石墨烯熱固性樹脂熱塑性樹脂
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文主要分成三大部分作探討:
    一.利用熱還原方法製備石墨烯 (Graphene) 。
    二.以石墨烯與多壁碳管 (MWCNT) 為補強材料,製作熱固性及熱塑性複合材料雙極板,並對其導電性、熱膨脹係數、導熱性及抗折強度相互比較。
    三.再以製備之複合材料雙極板組成單電池,進行實際發電效率測試。
    第一部分先將石墨在酸性環境下進行氧化反應形成氧化石墨 (graphite oxide,GO) 接著進行高溫熱還原處理形成石墨烯。先利用XRD進行結構分析,探討因氧化及還原行為所造成層間距差異,氧化石墨的層間距為0.74 nm,經還原後的石墨烯其層間距下降為0.38 nm;以TGA測試比較含氧比例的熱重損失差異,實驗結果為氧化石墨的含氧比例為40.5%,經還原後的石墨烯為7.5%;再透過XPS探討GO和石墨烯的含氧官能基接枝情形;由Raman圖譜觀察D-band (sp3混成軌域) 及G-band (sp2混成軌域) ,計算強度比例 (ID/IG) ,分析共軛情形,探討經熱還原後共軛平面的修復情形;再以TEM 觀察其形態學,由TEM觀察,可見石墨烯具皺褶感外觀,由4-5層的單層石墨烯結合而成,且經由計算,其長徑比高達3200-5200。透過上述儀器分析之佐證,說明已成功利用熱還原方式快速製備石墨烯。
    第二部分則利用所製得的石墨烯,以添加量為0.2 phr和多壁碳管 (MWCNTs) 添加量為0.2、0.5、1 phr做為補強材料,加入熱固性樹脂乙烯酯樹脂 (Vinyl ester) 與70 wt% 的石墨一同進行塊狀模造捏合 (bulk-molding compound,BMC),在150℃下進行熱壓成型成複合材料雙極板,進行各項性質之分析。
    研究發現,由於石墨烯本身的優異性質,當加入0.2 phr的石墨烯能夠大幅提升複合材料的熱導性、機械強度及導電性。熱傳導性質,由18.4Wm-1K-1提升至27.2Wm-1K-1,增加47.8%;抗折強度,由28.0MPa增加至49.2MPa,增加75.7%;平面導電度,由155.7Scm-1提高至286.4 Scm-1,增加83.9%。與一維結構的多壁碳管相較下,加入二維結構的石墨烯,因存在部分的含氧官能基能和乙烯酯樹脂產生分子間氫鍵及皺褶形貌外觀,不但能幫助石墨烯的均勻分散,且能夠以較少的添加量達到最佳化的補強效果。
    第三部分則是分別添加0.25、0.5、1、2 phr的石墨烯和0.25、0.5、1、2 phr的多壁碳管加入熱塑性樹脂聚丙烯(polypropylene,MI=19g/10min,20 wt%),為了達到較佳的補強材料分散,預先將石墨烯或是多壁碳管藉由溶劑(甲苯)分散於聚丙烯中,再利用塑譜儀(Brabender) 與80wt%的石墨一同進行熔融混練,在熱壓成型以製作熱塑性複合材料雙極板,並對其結晶行為、熱膨脹係數、導電性質及抗折強度與單電池測試進行測試與比較。
    研究結果發現,透過DSC的結晶特徵峰分析,加入0.5、1、2 phr的石墨烯與0.25、0.5、1、2 phr的多壁碳管,能使聚丙烯的結晶度提高,同時並分析表面曲度(curvature)及結構形貌差異所造成的結晶行為;接著,在DCS的熔融特徵峰圖譜中,可發現加入石墨烯比添加多壁碳管更能幫助形成完整的α相結晶,預期在機械性質將有所提升;熱膨脹係數,由60.55 μm/m℃(不含石墨烯) 下降至 26.82μm/m℃(含2 phr graphene) 低於37.52μm/m℃(含2 phr MWCNT);由抗折強度測試得知,除了補強材料本身優異特性且加入的石墨烯或是多壁碳管能提升聚丙烯的結晶度,有助於改善機械強度,其抗折強度從20 MPa (不含石墨烯) 提升至27 MPa,增加了35% ;由導電度測試可知,當結晶度愈低時,愈能將補強材料均勻分散,以達到較好的補強效果,0.25 phr 為石墨烯複材之導電逾滲值 (Percolation Threshold),最大的導電度係在加入1phr 石墨烯時,可高達486.55 S/cm;由組成之單電池測試分析,加入1 phr 石墨烯時之最大電流密度從1.82A cm-2 (不含石墨烯) 提升至2.38 Acm-2 (含2 phr graphene),高於加入1phr 多壁碳管時的最大電流密度(2.26 Acm-2);而電功率也從0.643Wcm-2 (不含石墨烯)增加至0.844 Wcm-2 (含2 phr graphene),高於1phr 多壁碳管加入時的電功率(0.806 Wcm-2)。
    本研究所製備的熱固性及熱塑性複合材料雙極板之導電度、抗折強度及導熱性等皆符合美國能源部 (Department of Energy U.S.A. , D.O.E.) 的要求指標。因此,本研究所製備的複合材料雙極板可應用於質子交換膜燃料電池。


    目錄 摘要 I Abstract V 謝誌 IX 目錄 X 圖目錄 XV 表目錄. XXVII 第一章 緒論 1 1-1前言 1 1-2燃料電池的簡介 4 1-2-1 燃料電池的演進 4 1-2-2 燃料電池的優點 10 1-2-3 燃料電池的種類 12 1-2-4 質子交換膜燃料電池的基本元件 18 1-2-4-1 雙極板 19 1-2-4-2 質子交換膜 20 1-2-4-3 觸媒催化層 21 1-2-4-4 膜電極組 24 第二章 理論基礎 27 2-1質子交換膜燃料電池基本原理及理論效率 27 2-1-1質子交換膜燃料電池基本原理 27 2-1-2質子交換膜燃料電池的極化現象 31 2-2雙極板材料 35 2-2-1石墨板 36 2-2-2 金屬板 37 2-2-3 複合材料雙極板 41 2-2-4 各式雙極板的優缺點 48 第三章 文獻回顧 49 3-1複合材料雙極板文獻回顧. 49 3-1-1複合材料雙極板的演進 49 3-1-2複合材料雙極板文獻回顧 50 3-1-2-1玻璃纖維補強材 50 3-1-2-2碳纖維補強材. 51 3-1-2-3碳黑補強材 63 3-1-2-4膨脹石墨補強材. 71 3-1-2-5黏土補強材 79 3-1-2-6奈米碳管補強材 80 3-2石墨烯 92 3-2-1石墨烯結構 92 3-2-2-1 撕膠帶法/輕微摩擦法 94 3-2-2-2 化學分散法 94 3-2-2-3碳氫前驅物化學沉積法 95 3-2-2-4氧化奈米石墨烯片熱還原法.....................................................97 3-2-2-5氧化奈米石墨烯片化學還原法 98 3-2-3石墨烯性質及應用 99 3-2-4高分子/石墨烯複合材料 101 第四章 雙極板專利管理地圖 131 4-1雙極板專利管理地圖 131 4-1-1研究方法 131 4-1-2專利分析 131 4-1-3雙極板專利管理圖結論 135 4-2專利技術分析 136 4-2-1 BMC配方專利 136 4-2-2樹脂系統專利 141 4-2-3導電添加劑專利 145 4-2-4石墨顆粒專利 149 4-2-5雙極板厚度專利 150 4-2-6雙極板電氣性質專利 151 4-2-7雙極板機械性質專利 153 第五章 研究目的與內容 154 第六章 實驗步驟與流程 157 6-1實驗藥品 157 6-2乙烯酯樹脂特性、製備與機制 160 6-2-1乙烯酯樹脂合成 161 6-3實驗流程圖 162 6-4實驗步驟 165 6-4-1氧化石墨和石墨烯之製備 165 6-4-2石墨烯/VE與多壁碳管/VE複合材料之製備. 165 6-4-3石墨烯/VE與多壁碳管/VE熱固性複合材料雙極板之製備 166 6-4-4石墨烯/PP與多壁碳管/PP熱塑性複合材料雙極板之製備 166 6-5儀器設備及測試方法 168 第七章 研究結果與討論 174 7-1分析氧化石墨及石墨烯 174 7-1-1 XRD圖譜分析 174 7-1-2 TGA圖譜分析 178 7-1-3 XPS圖譜分析 181 7-1-4 Raman圖譜分析 184 7-1-5 TEM分析 187 7-2含石墨烯與多壁碳管之熱固性複合材料雙極板特性比較 188 7-2-1雙極板熱傳導性檢測 188 7-2-2雙極板機械性質檢測 191 7-2-3複材SEM檢測 193 7-2-4雙極板平面導電性檢測 195 7-2-5石墨烯/乙烯酯樹脂之複材TEM檢測 197 7-2-6複合材料雙極板在單電池的測試 199 7-3含石墨烯與多壁碳管之熱塑性複合材料雙極板特性比較 202 7-3-1 DSC圖譜分析-Tc 202 7-3-2 DSC圖譜分析-Tm 207 7-3-3雙極板熱膨脹性質檢測 209 7-3-4雙極板機械性質檢測 213 7-3-5雙極板平面導電性檢測 217 7-3-6熱塑性複合材料雙極板在單電池測試 220 第八章 研究總結論 223 第九章 參考文獻 231 圖目錄 Figure 1-1 Fossil fluid production/demand estimates 2 Figure 1-2 Renewables account for the majority of capacity additions from 2008 to 2035 3 Figure 1 3 Fuel cell designed by Grove 4 Figure 1 4 Mercedes-Benz 發表 F-CELL Roadster概念車 9 Figure 1 5 Mercedes-Benz B-Class F-CELL相關資料統計 9 Figure 1 6 Types of fuel cells 15 Figure 1 7 Single cell structure of PEMFC 18 Figure 1 8 Stacks of PEMFCs 18 Figure 2-1 Proton exchange membrane fuel cell 27 Figure 2-2 燃料電池單電池特性和能量的關係 32 Figure 2-3 質子交換膜燃料電池之電壓-電流密度曲線圖 34 Figure 2-4 雙極板分類圖 35 Figure 2-5 石墨雙極板 36 Figure 2-6金屬雙極板 37 Figure 2 7 Average weekly cell potential. Average cell potential datafor each 100-h period the cells were under load 38 Figure 2 8 Contact resistance under fuel cell conditions 39 Figure 2 9 Flow chart of the whole electroforming process 40 Figure 2-10 複合材料雙極板 46 Figure 3 1 Component costs in fuel cell stack in percentage 49 Figure 3 2 Wet-lay process for making bipolar plate 50 Figure 3 3 Schematic diagram of manufacture of wet-lay composite sheets and bipolar plates 52 Figure 3 4 Electrical conductivity of wet-lay composite materials 53 Figure 3 5 Tensile and flexural strength of composite materials 53 Figure 3 6 Failure modes of tensile specimens: (a) No fabric; (b) 1 layer fabric; (c) 2 layer fabric 54 Figure 3 7 Envisioned process for the continuous manufacturing of inate polymer composite bipolar plates by pre-consolidating the wet-lay core material 55 Figure 3 8 Schematic drawing of the compression molding of the composite plate 56 Figure 3 9 SEM image of the composite bipolar plate 56 Figure 3 10 Mass loss of the composite bipolar plate at 120 ℃ 57 Figure 3 11 Electromagnetic-carbon surface treatment of epoxy 58 Figure 3 12 Schematic drawing of electromagnetic-carbon surface treatment process 58 Figure 3 13 SEM images of fabricated bipolar plate: (a) without surface pre-treatment; (b) with surface pre-treatment 58 Figure 3 14 Total resistance with respect to compaction pressure 59 Figure 3 15 Fibre deformations with different initial volume fraction : (a)with surface pre-treatment; (b) without surface pre-treatment 59 Figure 3 16 Cross-sectional view of hybrid carbon-filled, composite bipolar plate 60 Figure 3 17 Through-plane conductivity of GP/CFF/EP and CFP composites measured at 4MPa 60 Figure 3 18 Flexural strength of GP/CFF/EP and CFP composite at 70 vol.% filler 61 Figure 3 19 SEM images of fractured surfaces of GP/CFF3/EP composites; (a) 60 vol.%, (b) 70 vol.%, (c) 80 vol.% GP/CFE and (d) CFP composites 61 Figure 3 20 Cross-sectional view of moulded bipolar plates of composites: (a) 65 vol%, (b) 70 vol%, (c) 75 vol% GP/CFF3 composites, and (d) CFP composite 62 Figure 3 21 Moulded bipolar lates; (a) GP/CFF3/EP composite and (b) CFP composite 62 Figure 3 22 Relative electrical conductivity (φc/φm) of the carbon black illed LDPE (circles) or HDPE (squares) as a function of the filler content (φ) 64 Figure 3 23 Relative values of elongation at break for the carbon black filled LDPE or HDPE as a function of the filler content (φ). 64 Figure 3 24 Injection-molded bipolar plates 66 Figure 3 25 I–V characteristic of novolac and resole type phenolic resin based bipolar plate (single cell experiment) 67 Figure 3-26 Conductivity of melt-compounded and solution Blended PP/G, PP/G/CB, and PP/G/PANi composites 69 Figure 3 27 DSC–TG curve of the composite bipolar plate 70 Figure 3 28 Mass loss of composite with different aging times 70 Figure 3 29 Proposed conductivity mechanism using EG: (a) “large” EG chunks and (b) “small” EG chunks 72 Figure 3 30 Effect of graphite loading and compression pressure on resistance(0.65mm thickness; volume percent) 72 Figure 3 31 Effect of graphite loading and sanding on resistance ( 0.65 mm, 1.4 MPa) 73 Figure 3 32 Effect of EG particle size on resistance (0.65 mm thickness10 v/o EG/epoxy) 73 Figure 3 33 Schematic diagram of manufacture of composite bipolar plates: performing and stampin 74 Figure 3 34 Shape of conductive fillers: (a) graphite flake ; (b)expanded graphite; (c) horizontally compressed expanded graphite 75 Figure 3 35 Compression–Impregnation method 76 Figure 3 36 Impregnation–Compression method 76 Figure 3 37 Compression–Impregnation–Compression method 77 Figure 3 38 SEM micrographs of cross-section of the composites prepared by different methods with 40% resin solution 77 Figure 3 39 200 h fuel cell testing with the optimum epoxy/CEG composite bipolar plate 78 Figure 3 40 I-V and I-P curves of MM/D2000 and wihtout MMT/D2000 (graphite) single cells 79 Figure 3 41 Optical micrographsof polypropylene and PP/SWNT composite containing 0.8 wt%SWCNT 80 Figure 3-42 DSC cooling and heating curves for PP and PP /SWCNT composite containing 0.8 wt% SWCNTs 81 Figure 3-43 Models of conductive paths in composite bipolar plate: with homogeneous MWCNTs/POP2000 and MWCNTs aggregation. 82 Figure 3-44 I-V and I–P curves of single cell using composite bipolar plate with 70 wt% graphite and with various MWCNTs (1phr) 83 Figure 3 45 Chemical reaction between treated CNTs and PFresin 84 Figure 3 46 WAXD profiles for unfilled iPP and for nanocomposite containing 0.8 wt % of SWCNTs , showing the characteristic diffraction peaks of R-crystalline ipp ........................................85 Figure 3-47 Bright-field TEM of iPP/MWCNT nanocomposite ultrathin film nonisothermally crystallized from the melt at 5℃/min ; scale bar :500nm 85 Figure 3 48 The flexural strengths of the PP nanocomposite bipolar plates with 80 wt% graphite and various MWCNTs 86 Figure 3 49 The electrical conductivity of the PP nanocomposite bipolar plates with 80 wt% graphite and MWCNT 87 Figure 3 50 I-P curves of the single cells with graphite plates and various MWCNTs/PP nanocomposite bipolar plates 87 Figure 3 51 The dispersion diagram of MWCNTs/PP composite bipolar plate of (a) MWCNTs/POA400-DGEBA and (b)MWCNTs/POA2000-DGEBA systems 88 Figure 3-52 Electrical conductivity of CB/G/epoxy composites with various CB contents 89 Figure 3 53 Flexural strength of CB/G/epoxy composites with various CB contents 89 Figure 3 54 Electrical conductivity of MWNTs/G/epoxy composites with various MWNTs contents 90 Figure 3 55 Flexural strength of MWNTs/G/epoxy composites with various MWNTs contents………..... 91 Figure 3-56 SEM of fractured surface of MWCNTs/graphite/ Epoxy composites with various contents. 91 Figure 3 57零維奈米碳球、一維奈米碳管、三維石墨皆可 透過二維的石墨烯加以製造 93 Figure 3 58 Schematic of grapheme............... 95 Figure 3 59 Schematic of full-wafer scale deposition of graphene layers on polycrystalline nickel by CVD 96 Figure 3 60 Routes to functionalized graphenes. 96 Figure 3 61 Schematic illustration of graphite oxide.........….... 97 Figure 3 62 GO before (left) and after (right) flash heating at 600 ℃ 97 Figure 3 63 Schematic diagram of grapheme by chemical reduction 98 Figure 3 64 A proposed reaction pathway for epoxide reduction with hydrazine.…..... 98 Figure 3 65 Histogram of the technical term ‘‘graphene’’ till 2007. 99 Figure 3 66石墨烯模擬圖…...... ..................100 Figure 3 67 Electrical conductivity of the polystyrene–graphene composites as a function of filler volume fraction…... 101 Figure 3 68 The flexural strength of bipolar plates…... 102 Figure 3 69 The electrical conductivity of bipolar plates…... 102 Figure 3 70不同長徑比的graphene-epoxy 熱導性比較…... 103 Figure 3 71添加量與熱導性關係圖….... 103 Figure 3 72 DSC thermograms obtained on heating of (a) WPUN-0, (b)WPUN-3, and (c) WPUN-6 105 Figure 3 73 ESEM micrographsof exfoliated graphitenanoflakes xGnP-1(top view,scale bar 5 lm) and (b) TEM imag. 106 Figure 3-74 Crystallization temperature and degree of crystallinity of xGnP-PP nanocomposite. 107 Figure 3 75 XRD of xGnP-1/PP made by melt mixing and injection 108 Figure 3-76 XRD of xGnP-15/PP made by melt mixing and Injection molding.... 108 Figure 3 77 Effect of cooling rate on the electrical conductivity of xGnP/PP…... 110 Figure 3 78 Crystal size of polypropylene (PP) based on XRD 110 Figure 3-79 Schematic illustration of the dispersion of graphene in the epoxy matrix via solution mixing 111 Figure 3 80 SEM analysis of the freeze-fractured surface of agraphene/epoxy composite .…... 112 Figure 3 81 Ultimate tensile strength for the baseline epoxy and PL/epoxy, MWNT/epoxy, and SWNT/epoxy nanocomposites.….... 112 Figure 3 82 Young’s modulus of nanocomposite samples with 0.1% weight of GPL, 0.1% weight of SWNT, and 0.1% weight of MWNT is compared with the pristine epoxy matrix 113 Figure 3 83 Mode I fracture toughness and fracture energy (GIc) for the baseline epoxy and GPL/epoxy, MWNT/epoxy, and SWNT/epoxy nanocomposites at 0.1 wt % fraction of nanofillers.…... 113 Figure 3 85 Photographs of an epoxy nanocomposite thin film (35 vol %carbon-nanosheet loading) showing that the film is still flexible . 114 Figure 3 86 View of (A) natural graphite, (B) GO and (C) TrGO imaged by means of ESEM…... 116 Figure 3 87Specific resistivity of SAN , PC , iPP and PA6 nanocomposites as a function of the TrGO content 116 Figure 3 88 Young’s modulus as a function of nanofiller content For PC and SAN nanocomposites…... 117 Figure 3 89 Low (a) and high (b) magnification TEM micrographs of PET nanocomposite with 3 vol % graphene. 118 Figure 3 90 Graphite/PET 和 grapheme /PET 導電性.... 118 Figure 3 91 Raman spectra of (a) graphite, (b) GO, and (c)graphene 120 Figure 3 92 XRD patterns of graphene/PVA composites with various graphene contents 120 Figure 3 93 Typical stress-strain plots of the composites with various graphene loadings. 121 Figure 3 94 Mechanical properties of grapheme/PVA composites with various graphene loadings: tensile strength and elongation at break versus graphene loading 121 Figure 3 95 Models of various dispersion types of graphene nanosheet in PVA matrix 122 Figure 3 96 SEM of (a) acid intercalated graphite, (b) microwave expanded graphite, (c) microwave expanded graphite, (d) exfoliated graphite; xGnP15 ... 123 Figure 3 97 The storage modulus of xGnP-LLDPE nanocomposites by solution mixing and injection molded as xGnP loading contents 124 Figure 3 98 Thermal expansion behavior of xGnP-LLDPE nanocomposites by solution mixing and injection molded as xGnP loading contents form TMA results.. 124 Figure 3-99 SEM images of the MWCNTs (a) and GNSs (b) . The inset in b shows an AFM image of a GNS obtained by spincoating the GNS supernatant onto a SiO2/Si wafer 125 Figure 3 100 Schematic for preparation of composite with a segregated conductive network 126 Figure 3 101 The eletrical conductivity versus conductive filler content for the MWCNT/HDPE and GNS/HDPE composites 126 Figure 3-102 SEM of the MWCNT/HDPE and GNS/HDPE composite power powder 127 Figure 3 103 (A) Representative stress strain curves for various weight fractions of the graphene/PVC composite films and (B) the calculated Young’s modulus based on the slope of the elastic region 128 Figure 3 104 Mechanical properties of PVC thin films with various graphene loadings when stretched at the rate of 0.01 N/min at 20 ℃.... 128 Figure 3 105 Graph showing the influence of exfoliated graphene on the electrical conductivity of PVC導電性.... 129 Figure 3-106 SEM: dispersion of 1 vol % of xGnP-15 inside the Polymer matrix, the sample is polished to expose the edges of these platelets as white lines in the image. 130 Figure 3-107 Mechanical modulus of GnP particles of various sizes at different filler loading level of GnP-1and GnP-15 130 Figure 4 1 Patent search by year from ISI Web of Knowledge 132 Figure 4 2 Patent search by assignee country. 134 Figure 4 3 Paternt search by additives in composite bipolar plate 148 Figure 6 1 Polymerization of vinyl ester resin 161 Figure 6 2 Bisphnol-A epoxy-based (methacrylate) vinyl ester resin 161 Figure 6 3 Flow chart of the preparation and characterization of GO and graphene.. 162 Figure 6 4 The principle of graphene fabricationprocess. 163 Figure 6-5 Flow chart of the preparation and characterization of thermoset nanocomposite bipolar plate graphite/ VE/graphene. 163 Figure 6-6 Flow chart of preparation and characterization of thermoplastic nanocomposite bipolar plate – graphite / PP/graphene 164 Figure 7 1 XRD patterns of pristine graphite, graphite oxide, and graphene 176 Figure 7 2 The d-spacing of graphite, graphite oxide, and graphene.. 177 Figure 7 3 TGA curves of graphite, GO, and graphene. 179 Figure 7 4 Schematic diagram of graphene manufacture. 180 Figure 7 5 High-resolution C1s XPS spectra of graphite oxide and grapheme 182 Figure 7 6 Raman spectra of graphite, GO, and graphene. 186 Figure 7 7 TEM observation of graphene (a) low-magnification, (b)high- magnification, and (c) the SAED pattern 187 Figure 7-8 Thermal conductivity of various nanocomposite Conducting plates with the enhancement percentage 190 Figure 7 9 Schematic illustrations of dispersions of graphene and MWCNT with different ratios in VE. 190 Figure 7-10 The flexural strength of various nanocomposite conducting plates. 192 Figure 7 11 The enhancement percentage of various nanocomposite conducting plates in flexure strength. 92 Figure 7 12 SEM images of fractured surface of (a), (b) pure vinyl ester and nanocomposite with (c), (d) 0.2 phr MWCNT and (e) , (f) 0.2 phr graphene 194 Figure 7 13 In-plane electrical conductivity of various nanocomposite conducting plates 196 Figure 7-14 The enhancement percentage of various nanocomposite conducting plates in in-plan electrical conductivity 196 Figure 7 15 Schematic illustration of the electron transfering in the composite bipolar plate containg graphene 197 Figure 7 16 TEM images of the specimen from the cross-sectional microtomy of 0.2 phr graphene/VE nanocomposite (a) ×10,000, (b) ×25,000, and (c) ×120,000. 198 Figure 7 17 I-V, I-P curves of single cell with different reinforcement in nanocomposite bipolar plate 201 Figure 7 18 Schematic Diagrams of Conformational Ordering on theMWCNT Surface: (a) Melt State, (b) Early Stage, and (c) Last Stage 204 Figure 7 19 DSC cooling curves for PP/Graphite/Graphene. 205 Figure 7 20 DSC cooling curves for PP/Graphite/MWCNT 206 Figure 7 21 DSC heating curves for PP/Graphite/Graphene. 208 Figure 7 22 DSC heating curves for PP/Graphite/MWCNT 208 Figure 7 23 Coefficient of thermal expansion of composite bipolar plate containing graphene or carbon nanotube content (phr) and 80% graphite 211 Figure 7 24 Schematic illustration of of PP-molecular chains confined by the graphene or MWCNT 212 Figure 7 25 Flexural strength of composite bipolar plate containing various contents of graphene and MWCNT (phr) with 80% graphite 215 Figure 7 26 SEM images of fractured surface of (a), (c), (e) 2 phr graphene /PP and (b),(d),(f) 2 phr MWCNT/PP. ( magnification:(a),(b)10k;(c),(d)20k;(e),(f)50k) 216 Figure 7 27 In-plane electrical conductivity of various content of graphene or MWCNT(phr) with 80% graphite 218 Figure 7 28 The model of conductive paths in the nanocomposite bipolar plates with graphene in lower and higher crystallinity of propylene 219 Figure 7 29 TEM images of graphite bipolar plate containing 1 phr Graphene/PP and 1 phr MWCNT/PP. 219 Figure 7 30 I-V, I-P curves of single cell with different reinforcement innanocomposite bipolar plate 222 表目錄 Table 1 1 The history of fuel cell in the automobile 6 Table 1 2 The basic properties of fuel cells 16 Table 2-1 本實驗室歷年複合材料雙極板成果一覽表 47 Table 2-2 Characteristics of different types of bipolar plates 48 Table 3 1 The average thickness of bipolar plate vs. contact resistivity value and drop percentage 51 Table 3-2 Compositions of wet-lay composite materials 52 Table 3-3 Results of tensile test with different layer fabrics 57 Table 3-4 Elongation at break (ε) and standard deviation data (S) for different carbon black contents (CB) in high or low density polyethylene matrix 65 Table 3-5 Comparison of properties of bipolar plates developed with commercial bipolar plates 68 Table 3-6 Flexural properties (ASTM D790) 73 Table 3-7 Properties of investigated materials 84 Table 3-8奈米碳球、奈米碳管及石墨烯的性質比較 100 Table 3-9 Physical properties of WPU/FGS nanocomposites 105 Table 3-10 Effect of cooling rate on the crystallization temperature, degree of crystallinity, melting enthalpy and melting temperature of xGnP/PP 107 Table 3-11 Characteristic XRD peaks and corresponding crystallographic planes of polypropylene (PP) 109 Table 3-12 Composition and properties of graphite, GO and TrGO 115 Table 3-13 Percolation threshold of nanocomposites 116 Table 4-1 Patent search by assignee country 134 Table 4-2 The classfication of technology of composite bipolar plate 140 Table 4-3 Patent search by thermoset resin in composite bipolar plate 142 Table 4-4 Patent search by thermoplastic resin in composite bipolar plate 143 Table 4-5 Patent search by thermoplastic resin in composite bipolar plate (continuous) 144 Table 4-6 Patent search by the content of additives 145 Table 4-7 Patent search by additives in composite bipolar plate 147 Table 4-8 Patent search by graphite powder size 149 Table 4-9 Patent search by the thickness of composite bipolar plate 150 Table 4-10 Patent search by the conductivity of composite bipolar plate 151 Table 4-11 Patent search by mechanical property of composite bipolar plate 153 Table 6-1 Formulation of BMC material in this study 167 Table 7-1 The characteristic peak and corresponding d-spacing of XRD of graphite, graphite oxide, and graphene 177 Table 7-2 The temperature of pyrolysis for different types functional group in TGA analysis 180 Table 7-3 Relative atomic percentage (%) for different functional groups in C1s XPS spectra analysis 183 Table 7-4 Intensity ratio of graphene and GO 186 Table 7-5 In-palne crystallite size of MWCNT, graphene, and GO. 186 Table 7-6 The values of maximum current density and power density 201 Table 7-7 DSC of PP/Graphite/Graphene by thermal properities and the calculated crystallinity. 205 Table 7-8 DSC of PP/Graphite/MWCNT by thermal properities and the calculated crystallinity 206 Table 7-9 Coefficient of thermal expansion of various composite bipolar plates 211 Table 7-10 The values of maximum current density and power density 222

    1. Energy Information Administration,. “Annual Energy Outlook 2010”. .
    2. Energy Information Administration, A.E.O., Reference Case.
    3. K Sopian, A.H.S., Veziroglu T.-N., “Solar hydrogen energy option for Malaysia Procedding of the ineternational conference on advances in strategic technolpgy”, UKM, Bangi p209–20, 1995.
    4. www.energysolutionscenter.org/distgen/Tutorial/Cogeneration.htm.
    5. 許寧逸,顏溪成,”由碳能朝向氫能的燃料電池”,科學發展,2003年7月,367期.
    6. 陳振源,未來的綠色能源:燃料電池,科學發展,2005年7月,391期.
    7. 王智微,台灣燃料電池產業發展現況,能源報導,2006年8月.
    8. 泓明科技, w.h.c.
    9. 汽車日報, w.a.c.t.
    10. china.nikkeibp.co.jp 技術在線.
    11. http://vod02.nkfust.edu.tw/news/body_1.aspx?ID=3221&PAGE=10.
    12. http://www.energytrend.com.tw/2010_fc_expo_201003.
    13. http://news.u-car.com.tw/news-detail.asp?nid=9682.
    14. 鄭耀宗,徐耀昇, 燃料電池技術進展的現況分析,燃料電池論文集,經濟部能源委員會. p. p15–27.
    15. Larminie J., A.D., Fuel Cell Systems Explaine John Wiley, 2001.
    16. Kamaruzzaman S., R.W., Wan D., Renewable Energy, 2006. 31: p. 719.
    17. 林建良,鄭耀宗,朱啟寶,彭宗平., 以PEMFC做為小型攜帶式電力的可行性實驗研究,燃料電論文集,經濟部能源委員會. 1999: p. 109–119.
    18. Li X.G. and Sabir M., Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 2005. 30(4): p. 359-371.
    19. 台灣燃料電池資訊網,台灣經濟研究院. www.tfci.org.tw.
    20. 鄭耀宗等著, 現場型磷酸燃料應用於大用戶之可行性研究. 1995.
    21. Fuel Cell Handbook. 2000.
    22. 左峻德”, 燃料電池之特性與運用. 2001.
    23. www.mech.shibaura-it.ac.jp/lecture/materialfree/Energy/2005/.
    24. http://ct.tcgs.tc.edu.tw/resource/.
    25. www.ballard.com, 2006.
    26. 衣寶廉, ed. 燃料電池原理與應用 Fuel Cells The principles and Application. 2005年3月, 五南圖書出版社.
    27. Dicks A.L., The role of carbon in fuel cells. Journal of Power Sources, 2006. 156(2): p. 128-141.
    28. FCH Fuel cell and Hydrogen, NEDO. 2008: p. 4.
    29. エネルギー総合工学研究所, 新エネルギーの展望 固体高分子燃料電池. 2001: p. 7-9.
    30. 植田雅巳,橋本勝,森陽一,棚瀬繁雄,青井芳史,岩佐美喜男,境哲男, 燃料電池向けメタルセパレータの開発. クリモト技報, 2006: p. 2-6.
    31. Hermann A., Chaudhuri T., and Spagnol P., Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 2005. 30(12): p. 1297-1302.
    32. Davies D.-P., Bipolar plate materials for solid polymer fuel cells. Journal of Applied Electrochemistry, 1999. 30(1): p. 101-105.
    33. Wilson S.-M., Composite bipolar plate for electrochemical cells. 2000. WO00/25372.
    34. Bisaria K.-M., Injection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions. 2000. WO00/44005.
    35. Davies D.-P., Adcock P.-L., and Turpin M., Stainless steel as a bipolar plate material for solid polymer fuel cells. Journal of Power Sources, 2000. 86(1-2):
    p. 237-242.
    36. Vyas G., Electrical contact element and bipolar plate. 2004. US0081881.
    37. Joseph S., Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC). International Journal of Hydrogen Energy, 2005. 30(12): p. 1339-1344.
    38. Lee S.-J., Chen Y.-P., and Huang C.-H., Electroforming of metallic bipolar plates with micro-featured flow field. Journal of Power Sources, 2005. 145(2): p. 369-375.
    39. Garcia M.A.L. and Smit M.-A., Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell. Journal of Power Sources, 2006. 158(1): p. 397-402.
    40. 徐耀昇,鄭煜騰,鄭耀宗, ed. 燃料電池論文集,經濟部能委會. 低溫燃料電池的研製與分析. 1999. 101–108.
    41. Makkus C.-R., Fuel Cell Bulletin, 2002. 3: p. 5.
    42. H2 economy.com website. 2005.
    43. Kuan H.-C., Ma C.-C M., Chen K.-H., Chen S.-M. Preparation, electrical,
    mechanical and thermal properties of composite bipolar plate for a fuel cell.
    Journal of Power Sources, 2004. 134(1): p. 7-17.
    44. Yeager G.-W., Electrically conductive thermoset composition, method for the
    preparation thereof, and articles derived therefrom. 2005. US6905937.
    45. Graphitic materials in fuel cell system. Reinforced plastics, 2006.
    46. Yen C.-Y, Liao S.-H., Lin, Y.-F.,Hung, C.-H.Preparation and properties of high
    performance nanocomposite bipolar plate for fuel cell. Journal of Power
    Sources, 2006. 162(1): p. 309-315.
    47. Liao S.-H., Hung C.- H., and Ma C. -C. M., Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008. 176(1): p. 175-182.
    48. Liao S.-H., Yen C.-Y. ,Weng C-C., and Lin Y.-F., Preparation and properties of
    carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008. 185(2): p. 1225-1232.
    49. Liao S.-H., Weng C. -C., Yen C.- Y., and Hsiao M. -C., Preparation and
    properties of functionalized multiwalled carbon nanotubes/polypropylene
    nanocomposite bipolar plates for polymer electrolyte membrane fuel cells.
    Journal of Power Sources, 2010. 195(1): p. 263-270.
    50. Hsiao M.-C., Liao S.- H.,Yen M.- Y., and Ma C.- C. M., Electrical and thermal
    conductivities of novel metal mesh hybrid polymer composite bipolar plates for
    proton exchange membrane fuel cells. Journal of Power Sources, 2010. 195(2):
    p. 509-515.
    51. Hsiao M.-C. ,Liao S.- H.,Yen M. -Y., and Su A., Effect of graphite sizes and
    carbon nanotubes content on flowability of bulk-molding compound and
    formability of the composite bipolar plate for fuel cell. Journal of Power Sources,
    2010. 195(17): p. 5645-5650.
    52. Liao S.-H., Hsiao M.-C., Yen C.-Y., and Ma C.-C. M., Novel functionalized
    carbon nanotubes as cross-links reinforced vinyl ester/ nanocomposite bipolar
    plates for polymer electrolyte membrane fuel cells. Journal of Power Sources,
    2010. 195(23): p. 7808-7817.
    53. Dhakate S.-R., R.B.M., Kakati B.-K., and Dhami T.-L., Properties of graphite -
    composite bipolar plate prepared by compression molding technique for PEM
    fuel cell. International Journal of Hydrogen Energy 2007. 32: p. 4537-4543.
    54. Huang J., High conductivity thermoplastic composites for rapid production of
    fuel cell bipolar plates. 2004. US0229993.
    55. Chopra D., Post-molding treatment of current collector plates for fuel cell to
    improve conductivity. 2004. US0191608.
    56. Huang J.-H., Baird D.-G. and McGrath J.-E., Development of fuel cell bipolar
    plates from graphite filled wet-lay thermoplastic composite materials. Journal of
    Power Sources, 2005. 150: p. 110-119.
    57. Lee H.-S., Kim H. -J., Kim S. -G., and Ahn S. -H., Evaluation of graphite
    composite bipolar plate for PEM (proton exchange membrane) fuel cell:
    Electrical, mechanical, and molding properties. Journal of Materials Processing
    Technology, 2007. 187: p. 425-428.
    58. Cunningham B.-D., Huang J.H., and Baird D.-G., Development of bipolar plates
    for fuel cells from graphite filled wet-lay material and a thermoplastic laminate
    skin layer. Journal of Power Sources, 2007. 165(2): p. 764-773.
    59. Hwang I.-U., Yu H.- N., Kim S. -S., and Lee D. -G., Bipolar plate made of
    carbon fiber epoxy composite for polymer electrolyte membrane fuel cells.
    Journal of Power Sources, 2008. 184(1): p. 90-94.
    60. Kim B.-G. and Lee D.-G., Electromagnetic-carbon surface treatment of
    composite bipolar plate for high-efficiency polymer electrolyte membrane fuel
    cells. Journal of Power Sources, 2010. 195(6): p. 1577-1582.
    61. Kim, J.-W., Kim N.- H., Kim K. -T., and Tae Jin, Synergy effects of hybrid
    carbon system on properties of composite bipolar plates for fuel cells. Journal of
    Power Sources, 2010. 195(17): p. 5474-5480.
    62. Chodak I. and Krupa I., "Percolation effect" and mechanical behavior of carbon
    black filled polyethylene. Journal of Materials Science Letters, 1999. 18(18): p.
    1457-1459.
    63. King J.-A., Morrison F. -A., Keith J.-M., and Miller M.- G., Electrical
    conductivity and rheology of carbon-filled liquid crystal polymer composites.
    Journal of Applied Polymer Science, 2006. 101(4): p. 2680-2688.
    64. Chen C.-K. and Kuo J.-K., Nylon 6/CB polymeric conductive plastic bipolar
    plates for PEM fuel cells. Journal of Applied Polymer Science, 2006. 101(5): p.
    3415-3421.
    65. Maheshwari P.-H., Mathur R.-B., and Dhami T.-L., Fabrication of high strength
    and a low weight composite bipolar plate for fuel cell applications. Journal of
    Power Sources, 2007. 173(1): p. 394-403.
    66. Kakati B.-K. and Deka D., Differences in physico-mechanical behaviors of
    resol(e) and novolac type phenolic resin based composite bipolar plate for
    proton exchange membrane (PEM) fuel cell. Electrochimica Acta, 2007. 52(25):
    p. 7330-7336.
    67. Dweiri R. and Sahari J., Electrical properties of carbon-based polypropylene
    composites for bipolar plates in polymer electrolyte membrane fuel cell
    (PEMFC). Journal of Power Sources, 2007. 171(2): p. 424-432.
    68. Chen H., Liu H.- B., Yang L., and Li J. -X., Study on the preparation and
    properties of novolac epoxy/graphite composite bipolar plate for PEMFC.
    International Journal of Hydrogen Energy, 2010. 35(7): p. 3105-3109.
    69. Blunk R., Elhamid M. -H. , Lisi A.-D., and Mikhail Y., Polymeric composite
    bipolar plates for vehicle applications. Journal of Power Sources, 2006. 156(2):
    p. 151-157.
    70. Heo S.- I., Oh K.- S., Yun J. -C., and Jung S.- H., Development of preform
    moulding technique using expanded graphite for proton exchange membrane
    fuel cell bipolar plates. Journal of Power Sources, 2007. 171(2): p. 396-403.
    71. Du, Chao,Ming, Ping -wen,Hou, Ming-Fu, Jie Fu, and Yun-feng,The preparation
    technique optimization of epoxy/compressed expanded graphite composite
    bipolar plates for proton exchange membrane fuel cells. Journal of Power
    Sources, 2010. 195(16): p. 5312-5319.
    72. Bhattacharyya A.-R., Sreekumar T.-V., Liu T., and Kumar S., Crystallization
    and orientation studies in polypropylene/single wall carbon nanotube composite.
    Polymer, 2003. 44(8): p. 2373-2377.
    73. 陳韋任, 燃料電池用導電雙極板之碳奈米管/酚醛樹脂奈米複合材料備製及
    其性質研究. 私立中原大學機械工程研究所, 2004.
    74. Liao S.-H., Hung C.-H., Ma C.-C. M.,and Yen C.-Y.,Preparation and properties
    of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for
    polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008.
    176(1): p. 175-182.
    75. Yin Q., Sun K. -N., Li, A. -J., and Shao L., Study on carbon nanotube reinforced
    phenol formaldehyde resin/graphite composite for bipolar plate. Journal of
    Power Sources, 2008. 175(2): p. 861-865.
    76. Miltner H.-E., Grossiord N., Lu K. -B., and Loos J., Isotactic polypropylene/
    carbon nanotube composites prepared by latex technology. Thermal analysis of
    carbon nanotube-induced nucleation. Macromolecules, 2008. 41(15): p.
    5753-5762.
    77. Lee J.-H., Jang Y. -K.,Hong C.- E., and Kim N. H., Effect of carbon fillers on
    properties of polymer composite bipolar plates of fuel cells. Journal of Power
    Sources, 2009. 193(2): p. 523-529.
    78. Geim A.-K., K.S.N., The rise of graphene. Nature materials, 2007. 6: p. 183-191.
    79. http://zh.wikipedia.org.
    80. Du X., Skachko I., Duerr F., and Luican A., Fractional quantum Hall effect and
    insulating phase of Dirac electrons in graphene. Nature, 2009. 462(7270): p.
    192-195.
    81. http://dailynews.sina.com/bg/news/int/chinesedaily/20091219/0802975523.html.
    82. Li X., Zhang G., Bai X., and Sun X., Highly conducting graphene sheets and
    Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542.
    83. Gomez L.-Z., Kumar Y., and Zhou A.-C., Synthesis, Transfer, and Devices of
    Single- and Few-Layer Graphene by Chemical Vapor Deposition. IEEE Trans.
    Nanotechnol., 2008. 8: p. 135-138.
    84. Steurer P., Functionalized Graphenes and Thermoplastic Nanocomposites
    Based upon Expanded Graphite Oxide. Macromolecular Rapid Communications,
    2009. 30(4-5): p. 316-327.
    85. Becerril H.A., Rainer W., Ralf T., and Rolf M., Evaluation of Solution-
    Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS
    Nano, 2008. 2(3): p. 463-470.
    86. Gao W., Alemany L.- B., Ci L., and Ajayan, P.-M., New insights into the
    structure and reduction of graphite oxide. Nat Chem, 2009. 1(5): p. 403-408.
    87. Novoselov K. S., and A.K.G., Electric Field Effect in Atomically Thin Carbon
    Films. Science, 2004. 306: p. 666-669.
    88. Stankovich S., Synthesis of graphene-based nanosheets via chemical
    reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
    89. Du X., I S., Barker A., and Andrei E. Y., Nat. Nanotechnol, 2008. 3: p. 491.
    90. Novoselov K.S., Geim A. -K.,Morozov S. -V., and Jiang D., Two-dimensional
    gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p.
    197-200.
    91. Kopelevich Y. and Esquinazi P., Graphene Physics in Graphite. Advanced
    Materials, 2007. 19(24): p. 4559-4563.
    92. Stankovich S., Dikin D. -A., Dommett G. H. B., and Kohlhaas K.-M., Graphene-
    based composite materials. Nature, 2006. 442(7100): p. 282-286.
    93. Song Lulu, C., Guo Jiusheng, Centerville, Aruna Zhamu,Centerville, and Jang
    Bor Z., Centerville, HIGHLY CONDUCTIVE NANO-SCALED GRAPHENE
    PLATE NANOCOMPOSITESAND PRODUCTS. US20070158618, 2007.
    94. Yu A., Ramesh P.,Itkis M.,and Bekyarova E., Graphite Nanoplatelet−Epoxy
    Composite Thermal Interface Materials. The Journal of Physical Chemistry C,
    2007. 111(21): p. 7565-7569.
    95. Raghu A.-V., Lee Y.- R., Jeong H.- M., and Shin C. -M., Preparation and
    Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet
    Nanocomposites. Macromolecular Chemistry and Physics, 2008. 209(24): p.
    2487-2493.
    96. Kalaitzidou K., Fukushima H., Askeland P., and Drzal, L.-T., The nucleating
    effect of exfoliated graphite nanoplatelets and their influence on the crystal
    structure and electrical conductivity of polypropylene nanocomposites. Journal
    of Materials Science, 2008. 43(8): p. 2895-2907.
    97. Rafiee M.-A., Rafiee J.,Wang Z., and Song H., Enhanced Mechanical Properties
    of Nanocomposites at Low Graphene Content. ACS Nano, 2009. 3(12): p.
    3884-3890.
    98. Veca L.-M., Mohammed J.- M., Wang W., and Wang X., Carbon Nanosheets for
    Polymeric Nanocomposites with High Thermal Conductivity. Advanced
    Materials, 2009. 21(20): p. 2088-2092.
    99. Zhang H.-B., Zheng W. -G., Yan Q., and Yang, Y., Electrically conductive
    polyethylene terephthalate/graphene nanocomposites prepared by melt
    compounding. Polymer, 2010. 51(5): p. 1191-1196.
    100. Zhao X., Zhang Q.-H., Chen D.-J., and Lu P., Enhanced Mechanical Properties
    of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules, 2010.
    43(5): p. 2357-2363.
    101. Kim S., Do I., and Drzal L.T., Thermal Stability and Dynamic Mechanical
    Behavior of Exfoliated Graphite Nanoplatelets-LLDPE Nanocomposites.
    Polymer Composites, 2010. 31(5): p. 755-761.
    102. Du J., Zhao L., Zeng Y., and Zhang L., Comparison of electrical properties
    between multi-walled carbon nanotube and graphene nanosheet/high density
    polyethylene composites with a segregated network structure. Carbon, 2011.
    49(4): p. 1094-1100.
    103. Vadukumpully S., Paul J., Mahanta N., and Valiyaveettil S., Flexible conductive
    graphene/poly(vinyl chloride) composite thin films with high mechanical
    strength and thermal stability. Carbon, 2011. 49(1): p. 198-205.
    104. Biswas S., Fukushima H., and Drzal L.T., Mechanical and electrical property
    enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer
    nanocomposites. Composites Part A: Applied Science and Manufacturing, 2011.
    42(4): p. 371-375.
    105. Kim H., Miura Y., and Macosko C.W., Graphene/Polyurethane Nanocomposites
    for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials,
    2010. 22(11): p. 3441-3450.
    106. Green A.-A. and Hersam M.-C., Emerging Methods for Producing Monodisperse
    Graphene Dispersions. Journal of Physical Chemistry Letters, 2010. 1(2): p.
    544-549.
    107. Kim, J., Kwak S.,Hong .S.-M., Lee J. R., Nonisothermal Crystallization
    Behaviors of Nanocomposites Prepared by In Situ Polymerization of High-
    Density Polyethylene on Multiwalled Carbon Nanotubes. Macromolecules,
    2010. 43(24): p. 10545-10553.
    108. Xu J.-Z., Chen C.,Wang Y., and Tang H., Graphene Nanosheets and Shear Flow
    Induced Crystallization in Isotactic Polypropylene Nanocomposites.
    Macromolecules, 2011. 44(8): p. 2808-2818.
    109. Xu J.-Z., Chen T., Yang C.-L., and Li Z.-M. et al., Isothermal Crystallization of
    Poly(L-lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A
    Comparative Study. Macromolecules, 2010. 43(11): p. 5000-5008.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE