研究生: |
蕭閔璇 Hsiao, Min-Hsuan |
---|---|
論文名稱: |
燃料電池用石墨烯強化之熱固性及熱塑性奈米複合材料雙極板之製備及其性質之研究 Preparation and Characterization of Graphene Reinforced Thermoset/Thermoplastic Nanocomposite Bipolar Plate for Fuel Cells |
指導教授: |
馬振基
Ma, Chen-Chi |
口試委員: |
馬振基
M.Ma, Chen-Chi 江金龍 陳景祥 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 241 |
中文關鍵詞: | 燃料電池 、雙極板 、石墨烯 、熱固性樹脂 、熱塑性樹脂 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文主要分成三大部分作探討:
一.利用熱還原方法製備石墨烯 (Graphene) 。
二.以石墨烯與多壁碳管 (MWCNT) 為補強材料,製作熱固性及熱塑性複合材料雙極板,並對其導電性、熱膨脹係數、導熱性及抗折強度相互比較。
三.再以製備之複合材料雙極板組成單電池,進行實際發電效率測試。
第一部分先將石墨在酸性環境下進行氧化反應形成氧化石墨 (graphite oxide,GO) 接著進行高溫熱還原處理形成石墨烯。先利用XRD進行結構分析,探討因氧化及還原行為所造成層間距差異,氧化石墨的層間距為0.74 nm,經還原後的石墨烯其層間距下降為0.38 nm;以TGA測試比較含氧比例的熱重損失差異,實驗結果為氧化石墨的含氧比例為40.5%,經還原後的石墨烯為7.5%;再透過XPS探討GO和石墨烯的含氧官能基接枝情形;由Raman圖譜觀察D-band (sp3混成軌域) 及G-band (sp2混成軌域) ,計算強度比例 (ID/IG) ,分析共軛情形,探討經熱還原後共軛平面的修復情形;再以TEM 觀察其形態學,由TEM觀察,可見石墨烯具皺褶感外觀,由4-5層的單層石墨烯結合而成,且經由計算,其長徑比高達3200-5200。透過上述儀器分析之佐證,說明已成功利用熱還原方式快速製備石墨烯。
第二部分則利用所製得的石墨烯,以添加量為0.2 phr和多壁碳管 (MWCNTs) 添加量為0.2、0.5、1 phr做為補強材料,加入熱固性樹脂乙烯酯樹脂 (Vinyl ester) 與70 wt% 的石墨一同進行塊狀模造捏合 (bulk-molding compound,BMC),在150℃下進行熱壓成型成複合材料雙極板,進行各項性質之分析。
研究發現,由於石墨烯本身的優異性質,當加入0.2 phr的石墨烯能夠大幅提升複合材料的熱導性、機械強度及導電性。熱傳導性質,由18.4Wm-1K-1提升至27.2Wm-1K-1,增加47.8%;抗折強度,由28.0MPa增加至49.2MPa,增加75.7%;平面導電度,由155.7Scm-1提高至286.4 Scm-1,增加83.9%。與一維結構的多壁碳管相較下,加入二維結構的石墨烯,因存在部分的含氧官能基能和乙烯酯樹脂產生分子間氫鍵及皺褶形貌外觀,不但能幫助石墨烯的均勻分散,且能夠以較少的添加量達到最佳化的補強效果。
第三部分則是分別添加0.25、0.5、1、2 phr的石墨烯和0.25、0.5、1、2 phr的多壁碳管加入熱塑性樹脂聚丙烯(polypropylene,MI=19g/10min,20 wt%),為了達到較佳的補強材料分散,預先將石墨烯或是多壁碳管藉由溶劑(甲苯)分散於聚丙烯中,再利用塑譜儀(Brabender) 與80wt%的石墨一同進行熔融混練,在熱壓成型以製作熱塑性複合材料雙極板,並對其結晶行為、熱膨脹係數、導電性質及抗折強度與單電池測試進行測試與比較。
研究結果發現,透過DSC的結晶特徵峰分析,加入0.5、1、2 phr的石墨烯與0.25、0.5、1、2 phr的多壁碳管,能使聚丙烯的結晶度提高,同時並分析表面曲度(curvature)及結構形貌差異所造成的結晶行為;接著,在DCS的熔融特徵峰圖譜中,可發現加入石墨烯比添加多壁碳管更能幫助形成完整的α相結晶,預期在機械性質將有所提升;熱膨脹係數,由60.55 μm/m℃(不含石墨烯) 下降至 26.82μm/m℃(含2 phr graphene) 低於37.52μm/m℃(含2 phr MWCNT);由抗折強度測試得知,除了補強材料本身優異特性且加入的石墨烯或是多壁碳管能提升聚丙烯的結晶度,有助於改善機械強度,其抗折強度從20 MPa (不含石墨烯) 提升至27 MPa,增加了35% ;由導電度測試可知,當結晶度愈低時,愈能將補強材料均勻分散,以達到較好的補強效果,0.25 phr 為石墨烯複材之導電逾滲值 (Percolation Threshold),最大的導電度係在加入1phr 石墨烯時,可高達486.55 S/cm;由組成之單電池測試分析,加入1 phr 石墨烯時之最大電流密度從1.82A cm-2 (不含石墨烯) 提升至2.38 Acm-2 (含2 phr graphene),高於加入1phr 多壁碳管時的最大電流密度(2.26 Acm-2);而電功率也從0.643Wcm-2 (不含石墨烯)增加至0.844 Wcm-2 (含2 phr graphene),高於1phr 多壁碳管加入時的電功率(0.806 Wcm-2)。
本研究所製備的熱固性及熱塑性複合材料雙極板之導電度、抗折強度及導熱性等皆符合美國能源部 (Department of Energy U.S.A. , D.O.E.) 的要求指標。因此,本研究所製備的複合材料雙極板可應用於質子交換膜燃料電池。
1. Energy Information Administration,. “Annual Energy Outlook 2010”. .
2. Energy Information Administration, A.E.O., Reference Case.
3. K Sopian, A.H.S., Veziroglu T.-N., “Solar hydrogen energy option for Malaysia Procedding of the ineternational conference on advances in strategic technolpgy”, UKM, Bangi p209–20, 1995.
4. www.energysolutionscenter.org/distgen/Tutorial/Cogeneration.htm.
5. 許寧逸,顏溪成,”由碳能朝向氫能的燃料電池”,科學發展,2003年7月,367期.
6. 陳振源,未來的綠色能源:燃料電池,科學發展,2005年7月,391期.
7. 王智微,台灣燃料電池產業發展現況,能源報導,2006年8月.
8. 泓明科技, w.h.c.
9. 汽車日報, w.a.c.t.
10. china.nikkeibp.co.jp 技術在線.
11. http://vod02.nkfust.edu.tw/news/body_1.aspx?ID=3221&PAGE=10.
12. http://www.energytrend.com.tw/2010_fc_expo_201003.
13. http://news.u-car.com.tw/news-detail.asp?nid=9682.
14. 鄭耀宗,徐耀昇, 燃料電池技術進展的現況分析,燃料電池論文集,經濟部能源委員會. p. p15–27.
15. Larminie J., A.D., Fuel Cell Systems Explaine John Wiley, 2001.
16. Kamaruzzaman S., R.W., Wan D., Renewable Energy, 2006. 31: p. 719.
17. 林建良,鄭耀宗,朱啟寶,彭宗平., 以PEMFC做為小型攜帶式電力的可行性實驗研究,燃料電論文集,經濟部能源委員會. 1999: p. 109–119.
18. Li X.G. and Sabir M., Review of bipolar plates in PEM fuel cells: Flow-field designs. International Journal of Hydrogen Energy, 2005. 30(4): p. 359-371.
19. 台灣燃料電池資訊網,台灣經濟研究院. www.tfci.org.tw.
20. 鄭耀宗等著, 現場型磷酸燃料應用於大用戶之可行性研究. 1995.
21. Fuel Cell Handbook. 2000.
22. 左峻德”, 燃料電池之特性與運用. 2001.
23. www.mech.shibaura-it.ac.jp/lecture/materialfree/Energy/2005/.
24. http://ct.tcgs.tc.edu.tw/resource/.
25. www.ballard.com, 2006.
26. 衣寶廉, ed. 燃料電池原理與應用 Fuel Cells The principles and Application. 2005年3月, 五南圖書出版社.
27. Dicks A.L., The role of carbon in fuel cells. Journal of Power Sources, 2006. 156(2): p. 128-141.
28. FCH Fuel cell and Hydrogen, NEDO. 2008: p. 4.
29. エネルギー総合工学研究所, 新エネルギーの展望 固体高分子燃料電池. 2001: p. 7-9.
30. 植田雅巳,橋本勝,森陽一,棚瀬繁雄,青井芳史,岩佐美喜男,境哲男, 燃料電池向けメタルセパレータの開発. クリモト技報, 2006: p. 2-6.
31. Hermann A., Chaudhuri T., and Spagnol P., Bipolar plates for PEM fuel cells: A review. International Journal of Hydrogen Energy, 2005. 30(12): p. 1297-1302.
32. Davies D.-P., Bipolar plate materials for solid polymer fuel cells. Journal of Applied Electrochemistry, 1999. 30(1): p. 101-105.
33. Wilson S.-M., Composite bipolar plate for electrochemical cells. 2000. WO00/25372.
34. Bisaria K.-M., Injection moldable conductive aromatic thermoplastic liquid crystalline polymer compositions. 2000. WO00/44005.
35. Davies D.-P., Adcock P.-L., and Turpin M., Stainless steel as a bipolar plate material for solid polymer fuel cells. Journal of Power Sources, 2000. 86(1-2):
p. 237-242.
36. Vyas G., Electrical contact element and bipolar plate. 2004. US0081881.
37. Joseph S., Conducting polymer-coated stainless steel bipolar plates for proton exchange membrane fuel cells (PEMFC). International Journal of Hydrogen Energy, 2005. 30(12): p. 1339-1344.
38. Lee S.-J., Chen Y.-P., and Huang C.-H., Electroforming of metallic bipolar plates with micro-featured flow field. Journal of Power Sources, 2005. 145(2): p. 369-375.
39. Garcia M.A.L. and Smit M.-A., Study of electrodeposited polypyrrole coatings for the corrosion protection of stainless steel bipolar plates for the PEM fuel cell. Journal of Power Sources, 2006. 158(1): p. 397-402.
40. 徐耀昇,鄭煜騰,鄭耀宗, ed. 燃料電池論文集,經濟部能委會. 低溫燃料電池的研製與分析. 1999. 101–108.
41. Makkus C.-R., Fuel Cell Bulletin, 2002. 3: p. 5.
42. H2 economy.com website. 2005.
43. Kuan H.-C., Ma C.-C M., Chen K.-H., Chen S.-M. Preparation, electrical,
mechanical and thermal properties of composite bipolar plate for a fuel cell.
Journal of Power Sources, 2004. 134(1): p. 7-17.
44. Yeager G.-W., Electrically conductive thermoset composition, method for the
preparation thereof, and articles derived therefrom. 2005. US6905937.
45. Graphitic materials in fuel cell system. Reinforced plastics, 2006.
46. Yen C.-Y, Liao S.-H., Lin, Y.-F.,Hung, C.-H.Preparation and properties of high
performance nanocomposite bipolar plate for fuel cell. Journal of Power
Sources, 2006. 162(1): p. 309-315.
47. Liao S.-H., Hung C.- H., and Ma C. -C. M., Preparation and properties of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008. 176(1): p. 175-182.
48. Liao S.-H., Yen C.-Y. ,Weng C-C., and Lin Y.-F., Preparation and properties of
carbon nanotube/polypropylene nanocomposite bipolar plates for polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008. 185(2): p. 1225-1232.
49. Liao S.-H., Weng C. -C., Yen C.- Y., and Hsiao M. -C., Preparation and
properties of functionalized multiwalled carbon nanotubes/polypropylene
nanocomposite bipolar plates for polymer electrolyte membrane fuel cells.
Journal of Power Sources, 2010. 195(1): p. 263-270.
50. Hsiao M.-C., Liao S.- H.,Yen M.- Y., and Ma C.- C. M., Electrical and thermal
conductivities of novel metal mesh hybrid polymer composite bipolar plates for
proton exchange membrane fuel cells. Journal of Power Sources, 2010. 195(2):
p. 509-515.
51. Hsiao M.-C. ,Liao S.- H.,Yen M. -Y., and Su A., Effect of graphite sizes and
carbon nanotubes content on flowability of bulk-molding compound and
formability of the composite bipolar plate for fuel cell. Journal of Power Sources,
2010. 195(17): p. 5645-5650.
52. Liao S.-H., Hsiao M.-C., Yen C.-Y., and Ma C.-C. M., Novel functionalized
carbon nanotubes as cross-links reinforced vinyl ester/ nanocomposite bipolar
plates for polymer electrolyte membrane fuel cells. Journal of Power Sources,
2010. 195(23): p. 7808-7817.
53. Dhakate S.-R., R.B.M., Kakati B.-K., and Dhami T.-L., Properties of graphite -
composite bipolar plate prepared by compression molding technique for PEM
fuel cell. International Journal of Hydrogen Energy 2007. 32: p. 4537-4543.
54. Huang J., High conductivity thermoplastic composites for rapid production of
fuel cell bipolar plates. 2004. US0229993.
55. Chopra D., Post-molding treatment of current collector plates for fuel cell to
improve conductivity. 2004. US0191608.
56. Huang J.-H., Baird D.-G. and McGrath J.-E., Development of fuel cell bipolar
plates from graphite filled wet-lay thermoplastic composite materials. Journal of
Power Sources, 2005. 150: p. 110-119.
57. Lee H.-S., Kim H. -J., Kim S. -G., and Ahn S. -H., Evaluation of graphite
composite bipolar plate for PEM (proton exchange membrane) fuel cell:
Electrical, mechanical, and molding properties. Journal of Materials Processing
Technology, 2007. 187: p. 425-428.
58. Cunningham B.-D., Huang J.H., and Baird D.-G., Development of bipolar plates
for fuel cells from graphite filled wet-lay material and a thermoplastic laminate
skin layer. Journal of Power Sources, 2007. 165(2): p. 764-773.
59. Hwang I.-U., Yu H.- N., Kim S. -S., and Lee D. -G., Bipolar plate made of
carbon fiber epoxy composite for polymer electrolyte membrane fuel cells.
Journal of Power Sources, 2008. 184(1): p. 90-94.
60. Kim B.-G. and Lee D.-G., Electromagnetic-carbon surface treatment of
composite bipolar plate for high-efficiency polymer electrolyte membrane fuel
cells. Journal of Power Sources, 2010. 195(6): p. 1577-1582.
61. Kim, J.-W., Kim N.- H., Kim K. -T., and Tae Jin, Synergy effects of hybrid
carbon system on properties of composite bipolar plates for fuel cells. Journal of
Power Sources, 2010. 195(17): p. 5474-5480.
62. Chodak I. and Krupa I., "Percolation effect" and mechanical behavior of carbon
black filled polyethylene. Journal of Materials Science Letters, 1999. 18(18): p.
1457-1459.
63. King J.-A., Morrison F. -A., Keith J.-M., and Miller M.- G., Electrical
conductivity and rheology of carbon-filled liquid crystal polymer composites.
Journal of Applied Polymer Science, 2006. 101(4): p. 2680-2688.
64. Chen C.-K. and Kuo J.-K., Nylon 6/CB polymeric conductive plastic bipolar
plates for PEM fuel cells. Journal of Applied Polymer Science, 2006. 101(5): p.
3415-3421.
65. Maheshwari P.-H., Mathur R.-B., and Dhami T.-L., Fabrication of high strength
and a low weight composite bipolar plate for fuel cell applications. Journal of
Power Sources, 2007. 173(1): p. 394-403.
66. Kakati B.-K. and Deka D., Differences in physico-mechanical behaviors of
resol(e) and novolac type phenolic resin based composite bipolar plate for
proton exchange membrane (PEM) fuel cell. Electrochimica Acta, 2007. 52(25):
p. 7330-7336.
67. Dweiri R. and Sahari J., Electrical properties of carbon-based polypropylene
composites for bipolar plates in polymer electrolyte membrane fuel cell
(PEMFC). Journal of Power Sources, 2007. 171(2): p. 424-432.
68. Chen H., Liu H.- B., Yang L., and Li J. -X., Study on the preparation and
properties of novolac epoxy/graphite composite bipolar plate for PEMFC.
International Journal of Hydrogen Energy, 2010. 35(7): p. 3105-3109.
69. Blunk R., Elhamid M. -H. , Lisi A.-D., and Mikhail Y., Polymeric composite
bipolar plates for vehicle applications. Journal of Power Sources, 2006. 156(2):
p. 151-157.
70. Heo S.- I., Oh K.- S., Yun J. -C., and Jung S.- H., Development of preform
moulding technique using expanded graphite for proton exchange membrane
fuel cell bipolar plates. Journal of Power Sources, 2007. 171(2): p. 396-403.
71. Du, Chao,Ming, Ping -wen,Hou, Ming-Fu, Jie Fu, and Yun-feng,The preparation
technique optimization of epoxy/compressed expanded graphite composite
bipolar plates for proton exchange membrane fuel cells. Journal of Power
Sources, 2010. 195(16): p. 5312-5319.
72. Bhattacharyya A.-R., Sreekumar T.-V., Liu T., and Kumar S., Crystallization
and orientation studies in polypropylene/single wall carbon nanotube composite.
Polymer, 2003. 44(8): p. 2373-2377.
73. 陳韋任, 燃料電池用導電雙極板之碳奈米管/酚醛樹脂奈米複合材料備製及
其性質研究. 私立中原大學機械工程研究所, 2004.
74. Liao S.-H., Hung C.-H., Ma C.-C. M.,and Yen C.-Y.,Preparation and properties
of carbon nanotube-reinforced vinyl ester/nanocomposite bipolar plates for
polymer electrolyte membrane fuel cells. Journal of Power Sources, 2008.
176(1): p. 175-182.
75. Yin Q., Sun K. -N., Li, A. -J., and Shao L., Study on carbon nanotube reinforced
phenol formaldehyde resin/graphite composite for bipolar plate. Journal of
Power Sources, 2008. 175(2): p. 861-865.
76. Miltner H.-E., Grossiord N., Lu K. -B., and Loos J., Isotactic polypropylene/
carbon nanotube composites prepared by latex technology. Thermal analysis of
carbon nanotube-induced nucleation. Macromolecules, 2008. 41(15): p.
5753-5762.
77. Lee J.-H., Jang Y. -K.,Hong C.- E., and Kim N. H., Effect of carbon fillers on
properties of polymer composite bipolar plates of fuel cells. Journal of Power
Sources, 2009. 193(2): p. 523-529.
78. Geim A.-K., K.S.N., The rise of graphene. Nature materials, 2007. 6: p. 183-191.
79. http://zh.wikipedia.org.
80. Du X., Skachko I., Duerr F., and Luican A., Fractional quantum Hall effect and
insulating phase of Dirac electrons in graphene. Nature, 2009. 462(7270): p.
192-195.
81. http://dailynews.sina.com/bg/news/int/chinesedaily/20091219/0802975523.html.
82. Li X., Zhang G., Bai X., and Sun X., Highly conducting graphene sheets and
Langmuir-Blodgett films. Nat Nano, 2008. 3(9): p. 538-542.
83. Gomez L.-Z., Kumar Y., and Zhou A.-C., Synthesis, Transfer, and Devices of
Single- and Few-Layer Graphene by Chemical Vapor Deposition. IEEE Trans.
Nanotechnol., 2008. 8: p. 135-138.
84. Steurer P., Functionalized Graphenes and Thermoplastic Nanocomposites
Based upon Expanded Graphite Oxide. Macromolecular Rapid Communications,
2009. 30(4-5): p. 316-327.
85. Becerril H.A., Rainer W., Ralf T., and Rolf M., Evaluation of Solution-
Processed Reduced Graphene Oxide Films as Transparent Conductors. ACS
Nano, 2008. 2(3): p. 463-470.
86. Gao W., Alemany L.- B., Ci L., and Ajayan, P.-M., New insights into the
structure and reduction of graphite oxide. Nat Chem, 2009. 1(5): p. 403-408.
87. Novoselov K. S., and A.K.G., Electric Field Effect in Atomically Thin Carbon
Films. Science, 2004. 306: p. 666-669.
88. Stankovich S., Synthesis of graphene-based nanosheets via chemical
reduction of exfoliated graphite oxide. Carbon, 2007. 45(7): p. 1558-1565.
89. Du X., I S., Barker A., and Andrei E. Y., Nat. Nanotechnol, 2008. 3: p. 491.
90. Novoselov K.S., Geim A. -K.,Morozov S. -V., and Jiang D., Two-dimensional
gas of massless Dirac fermions in graphene. Nature, 2005. 438(7065): p.
197-200.
91. Kopelevich Y. and Esquinazi P., Graphene Physics in Graphite. Advanced
Materials, 2007. 19(24): p. 4559-4563.
92. Stankovich S., Dikin D. -A., Dommett G. H. B., and Kohlhaas K.-M., Graphene-
based composite materials. Nature, 2006. 442(7100): p. 282-286.
93. Song Lulu, C., Guo Jiusheng, Centerville, Aruna Zhamu,Centerville, and Jang
Bor Z., Centerville, HIGHLY CONDUCTIVE NANO-SCALED GRAPHENE
PLATE NANOCOMPOSITESAND PRODUCTS. US20070158618, 2007.
94. Yu A., Ramesh P.,Itkis M.,and Bekyarova E., Graphite Nanoplatelet−Epoxy
Composite Thermal Interface Materials. The Journal of Physical Chemistry C,
2007. 111(21): p. 7565-7569.
95. Raghu A.-V., Lee Y.- R., Jeong H.- M., and Shin C. -M., Preparation and
Physical Properties of Waterborne Polyurethane/Functionalized Graphene Sheet
Nanocomposites. Macromolecular Chemistry and Physics, 2008. 209(24): p.
2487-2493.
96. Kalaitzidou K., Fukushima H., Askeland P., and Drzal, L.-T., The nucleating
effect of exfoliated graphite nanoplatelets and their influence on the crystal
structure and electrical conductivity of polypropylene nanocomposites. Journal
of Materials Science, 2008. 43(8): p. 2895-2907.
97. Rafiee M.-A., Rafiee J.,Wang Z., and Song H., Enhanced Mechanical Properties
of Nanocomposites at Low Graphene Content. ACS Nano, 2009. 3(12): p.
3884-3890.
98. Veca L.-M., Mohammed J.- M., Wang W., and Wang X., Carbon Nanosheets for
Polymeric Nanocomposites with High Thermal Conductivity. Advanced
Materials, 2009. 21(20): p. 2088-2092.
99. Zhang H.-B., Zheng W. -G., Yan Q., and Yang, Y., Electrically conductive
polyethylene terephthalate/graphene nanocomposites prepared by melt
compounding. Polymer, 2010. 51(5): p. 1191-1196.
100. Zhao X., Zhang Q.-H., Chen D.-J., and Lu P., Enhanced Mechanical Properties
of Graphene-Based Poly(vinyl alcohol) Composites. Macromolecules, 2010.
43(5): p. 2357-2363.
101. Kim S., Do I., and Drzal L.T., Thermal Stability and Dynamic Mechanical
Behavior of Exfoliated Graphite Nanoplatelets-LLDPE Nanocomposites.
Polymer Composites, 2010. 31(5): p. 755-761.
102. Du J., Zhao L., Zeng Y., and Zhang L., Comparison of electrical properties
between multi-walled carbon nanotube and graphene nanosheet/high density
polyethylene composites with a segregated network structure. Carbon, 2011.
49(4): p. 1094-1100.
103. Vadukumpully S., Paul J., Mahanta N., and Valiyaveettil S., Flexible conductive
graphene/poly(vinyl chloride) composite thin films with high mechanical
strength and thermal stability. Carbon, 2011. 49(1): p. 198-205.
104. Biswas S., Fukushima H., and Drzal L.T., Mechanical and electrical property
enhancement in exfoliated graphene nanoplatelet/liquid crystalline polymer
nanocomposites. Composites Part A: Applied Science and Manufacturing, 2011.
42(4): p. 371-375.
105. Kim H., Miura Y., and Macosko C.W., Graphene/Polyurethane Nanocomposites
for Improved Gas Barrier and Electrical Conductivity. Chemistry of Materials,
2010. 22(11): p. 3441-3450.
106. Green A.-A. and Hersam M.-C., Emerging Methods for Producing Monodisperse
Graphene Dispersions. Journal of Physical Chemistry Letters, 2010. 1(2): p.
544-549.
107. Kim, J., Kwak S.,Hong .S.-M., Lee J. R., Nonisothermal Crystallization
Behaviors of Nanocomposites Prepared by In Situ Polymerization of High-
Density Polyethylene on Multiwalled Carbon Nanotubes. Macromolecules,
2010. 43(24): p. 10545-10553.
108. Xu J.-Z., Chen C.,Wang Y., and Tang H., Graphene Nanosheets and Shear Flow
Induced Crystallization in Isotactic Polypropylene Nanocomposites.
Macromolecules, 2011. 44(8): p. 2808-2818.
109. Xu J.-Z., Chen T., Yang C.-L., and Li Z.-M. et al., Isothermal Crystallization of
Poly(L-lactide) Induced by Graphene Nanosheets and Carbon Nanotubes: A
Comparative Study. Macromolecules, 2010. 43(11): p. 5000-5008.