研究生: |
黃仁澤 Huang, Jen-Tse |
---|---|
論文名稱: |
Assuring Sensing Quality of Non-spontaneous Moving Sensors via Density Control: Using Drifting Sensors as an Example 利用密度控制確保非自主性移動感測器之資料品質:以漂流感測器為例 |
指導教授: |
金仲達
King, Chung-Ta |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊工程學系 Computer Science |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 31 |
中文關鍵詞: | 無線感測網路 、佈建密度 、非自主性移動 、現象觀測 |
外文關鍵詞: | wireless sensor network, deployment density, non-spontaneous moving, in-situ monitoring |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
因為微電子技術的進步,近年來無線感測網路 (Wireless Sensor Network) 的應用範圍也越來越廣泛。以無線感測網路應用於土石流監測為例,我們需要先將感測器佈建在河床上,土石流發生的時候,這些感測器會隨著土石流一起移動,同時收集相關的參數 (如震動大小、感測器位置、土石流密度等),並透過無線網路,將所收集到的資料送回岸邊的接收器。在這類型的應用情境中,感測器會隨著環境一起做非自發性的移動,並且因為應用的需求,需要在一定的區域範圍中,佈一定數量的感測器才能達到所要求的品質。然而因為監測環境的關係,我們必須在土石流發生前就先佈建感測器,所以決定感測器的佈建密度以確保收集資料的品質便成為一個重要的議題。之前相關的研究大致分為兩類,第一類是探討靜態(static)感測器的佈建密度,也就是感測器不會移動的情況。第二類是探討感測器具有自行移動能力時的佈建密度。我們的研究則是屬於第三類,即探討感測器會隨著環境而進行非自主性移動的情況。這個研究提出了一個系統化的模型,可以幫助我們決定感測器會隨著環境漂流時的佈建密度。
[1]
F. Ye, G. Zhong, S. Lu, L. Zhang. Energy efficient robust sensing coverage in large sensor networks Technical Report – UCLA, 2002.
[2]
Gabriel Paillard et al. Limit Theorem for Degree of Coverage and Lifetime in Large Sensor Networks. IEEE INFOCOM 2008 proceedings, Pages: 2011-2019.
[3]
H. Honghai and J. Hou On deriving the upper bound of α-lifetime for large sensor networks, in Proceedings of ACM Mobysis’04.
[4]
H. Honghai and J. Hou On deriving the upper bound of α-lifetime for large sensor networks, ACM Trans. on Sensor Networks, Vol. 1(2) pages 272 – 300, Nov. 2005.
[5] J. Yick et al. Wireless sensor network survey. Computer Networks. Volume 52, Issue 12, 22 August 2008, Pages 2292-2330.
[6] L. Selavo, A. Wood, Q. Cao, T. Sookoor, H. Liu, A. Srinivasan, Y. Wu, W. Kang, J. Stankovic, D. Young, andJ. Porter. LUSTER: Wireless Sensor Network for Environmental Research. In Proceedings of the 5th ACM Sensys Conference, 2007.
[7] M. Kuorilehto et al. A Survey of Application Distribution in Wireless Sensor Networks. EURASIP Journal on Wireless Communications and Networking 2005:5, 774–788.
[8] Poduri, S. Sukhatme, G.S. Constrained coverage for mobile sensor networks. Robotics and Automation, 2004. Proceedings. ICRA '04. 2004 IEEE International Conference. Volume: 1, Pages:165- 171 Vol.1.
[9] Ravelomanana, V. Extremal Properties of Three Dimensional Sensor Networks with Applications. IEEE Trans. Mob. Comp., 3: 246–257, 2004.
[10] Sahoo, P.K. Jang-Ping Sheu. Wei-Shin Lin. Dynamic Coverage and Connectivity Maintenance Algorithms for Wireless Sensor Networks. Communication Systems Software and Middleware, 2007. COMSWARE 2007. 2nd International Conference, Pages: 1-9.
[11] Santi, P. and Blough D. M. The Critical Transmitting Range for Connectivity in Sparse Wireless Ad Hoc Networks. IEEE Trans. Mob.Comp., 2: 1–15, 2003.
[12] Wei Wang Vikram Srinivasan et al. Trade-offs Between Mobility and Density for Coverage in Wireless Sensor Networks. International Conference on Mobile Computing and Networking, 2007.
[13] X. Yang et al. Design of a Wireless Sensor Network for Long-term, In-Situ Monitoring of an Aqueous Environment. Sensors 2002, 2, Pages 455-472.
[14] Z. Kong and E. M. Yeh, Analytical lower bounds on the critical density in continuum percolation, in Proc. of the Workshop on Spatial Stochastic Models in Wireless Networks (SpaSWiN), April 2007.
[15] Zhenning Kong and Edmund M. Yeh, Connectivity and Latency in Large-Scale Wireless Networks with Unreliable Links. IEEE INFOCOM 2008 proceedings.
[16] H. Lee et al. Using Mobile Wireless Sensor to In-Situ Tracking of Debris Flows. In Proceedings of the 6th ACM Conference on Networked Embedded Sensor Systems Poster Session, Raleigh, NC, November 2008.
[17] DB West. Introduction to Graph Theory. Prentice Hall, Upper Saddle River, NJ. 2001, Page 162.