簡易檢索 / 詳目顯示

研究生: 王子恒
Wang, Tzu-Heng
論文名稱: 開發多功能型奈米複合材料光電極以高效光電催化技術應用於水淨化研究
Integration of multifunctional nanocomposites and flexible optoelectrodes for efficient photoelectrocatalytic water purification
指導教授: 董瑞安
Doong, Ruey-An
口試委員: 吳劍侯
Wu, Chien-Hou
劉耕谷
Liu, Keng-Ku
林亮毅
Lin, Liang-Yi
林坤儀
Lin, Kun-Yi
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 生醫工程與環境科學系
Department of Biomedical Engineering and Environmental Sciences
論文出版年: 2023
畢業學年度: 112
語文別: 中文
論文頁數: 201
中文關鍵詞: 光電催化聚合物光纖中空薄膜纖維水污染處理技術水裂解產氫二氧化碳還原技術
外文關鍵詞: photoelectrocatalysis, polymeric optical fiber, hollow fiber membranes, water pollutant removal, H2 evolution, CO2 reduction
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 水中微量污染物、能源危機和溫室氣體(greenhouse gas)排放為目前全球所面臨的三個最為息息相關的環境威脅。為有效降這些環境污染問題,光電催化反應(photoelectrocatalysis)為最為彈性且具兼備高效率的處理方式之一,其提供更卓越的氧化還原催化效能,進一步擴展與應用至水處理技術、氫能源開發以及碳還原技術等。
    目前多數的光電催化研究著重於半導體材料之創新,較缺少反應系統設計的探討,進而衍生催化劑對於光捕獲與光電轉換效率不足的缺陷。因此本研究的主要目的在建構三種新型光電催化系統,包括串聯式光電化學系統、光纖維電極和雙纖維光催化系統,並將之應用於污染物處理、水裂解產氫以及二氧化碳還原。在串聯光電催化系統中,本研究利用TAB3Bi2Br7I2 perovskite/g-C3N4為陽極,phosphorene/g-C3N4為陰極,在陽極進行廢水中污染物的光電催化降解,陰極進行水裂解產氫研究,研究發現於模擬廢水的條件(COD於50 mg L-1)下,環丙沙星於陽極系統高達73%之降解效率,產氫效能於陰極系統仍擁有~2 mmol h-1 g-1。其次,光纖維電極之開發由聚合物光纖(polymeric optical fiber)、氧化銦錫半導體材料與可見光材料於Nafion-PVDF聚合物表面上方分層組成,突破光纖固有之絕緣特性。與相同製備過程之玻璃光電極反應面積(2 cm2)與量子效率(1.5%)相比,此項光纖電極分別大幅增進了7倍(14.1 cm2)與9倍(13.1%)之表現性。最後,雙纖維光催化系統集成了鐵金屬有機架構物-聚合物光纖以及高效率氣體傳輸之中空膜纖維(hollow membrane fiber),提升CO2(aq)分子與光響應奈米材料層吸附機會,加速碳還原應用之生成效率。相較於光催化漿料反應之甲酸(formic acid)產率(5 mM h-1 g-1),此系統之產率增加至16倍(82 mM h-1 g-1),並實現對甲酸生成之高選擇性(> 99%)。根據上述三項創新的光(電)催化系統之突破性與潛力,本研究成功提出針對光電催化系統的開發與創新,並且實現將低環境負荷目標以及可持續發展的處理平台,以高效處理潛在的污染問題,同時修復目前所面臨的環境挑戰。


    Micropollutants in water, the energy crisis, and greenhouse gas (GHG) emissions are three pressing environmental challenges confronting the world today. As technological advancements continue, the detection limitations of these pollutants have become increasingly critical. Nevertheless, the fundamental treatment processes currently in use are proving insufficient. Therefore, it is imperative to rapidly discover solutions to these intricate water pollution problems, reduce the dependence on fossil energy, and effectively address GHG issues. Photoelectrocatalytic processes (PECs) combine photocatalysis and electrochemical principles to enhance charge carrier migration. Nano-enabled PECs can be used for water purification, hydrogen (H2) production, and CO2 reduction.
    While most PEC studies focus on nanomaterial (NM) developments, the reactor design of PEC is also important to maximize the conversion efficiency of photons and electrons. To develop a low-cost, sustainable, and flexible catalytic platform under photo(electro)catalysis, we create three novel PEC systems: tandem PEC devices, optoelectrode fiber, and dual-fiber system. First, the tandem PEC system combines the TAB3Bi2Br7I2 perovskite/g-C3N4 anode and phosphorene/g-C3N4 photocathode. This enhances the interaction of electrons, holes, and protons for redox reactions. Our study discovered that when simulating wastewater conditions with a COD of 50 mg L-1, ciprofloxacin photoelectrocatalytic degradation showed an impressive efficiency of up to 73% within the anode system. Furthermore, the cathode system exhibited a H2 production performance of ~2 mmol h-1 g-1. Second, optoelectrode fiber, polymeric optical fiber (POF) integrated with indium tin oxide (ITO) NM plus visible-photocatalysts in the Nafion-PVDF polymers surface layer, break through the original insulation property to add an electrically-conductivity for PEC utilization. Compared to glass photoelectrodes within the same NMs deposition, this PEC-POF architecture achieves 7- and 9-fold in the catalytic reaction area (i.e., 2 cm2 → 14.1 cm2) and quantum efficiency (i.e., 1.5% → 13.1%), respectively. Last, the photocatalytic dual-fiber system, incorporated with NH2-MIL-101(Fe)-optical- and CO2-delivering hollow membrane-fiber, forms a sustainable CO2(aq) delivered into the catalysts, accelerating the reactive capability in carbon reduction. The CO2-to-HCOOH conversion rates (82 mM h-1 g-1) were >16-fold higher than the photocatalytic slurry reaction (~5 mM h-1 g-1), and the HCOOH selectivity was up to 99%. Drawing on the groundbreaking advancements and potential of the three innovative photo(electro)catalytic systems, this study has successfully introduced novel approaches to the development of PEC architectures. This achievement establishes an environmentally friendly and sustainable processing platform that efficiently addresses pollution concerns and current environmental challenges.

    中文摘要 i Abstract iii Table of Contents v List of Tables viii List of Figures x CHAPTER 1 Introduction 1 1-1 Introduction 1 1-2 Motivation and objectives 3 CHAPTER 2 Literature Review 6 2-1 Antibiotic compounds challenge water pollution 6 2-2 Sustainable and alternative energy in H2(g) 10 2-3 Greenhouse gas challenges in carbon dioxide emission 13 2-4 Photoelectroatalytic in photoreaction and electrochemistry integration 16 2-5 Optoelectrode architecture in modified polymeric optical fiber 20 2-6 Dual-fiber system in polymeric optical fiber and hollow membrane fibers 26 2-7 2-D nanosheet semiconductor material in phosphorene 29 2-8 Nano-photocatalyst development in organic-inorganic hybrid perovskites 33 2-9 Carbon-based catalyst in graphitic carbon nitride 37 2-10 Metal organic framework development 41 CHAPTER 3 Experimental Method 45 3-1 Experimental chemicals 45 3-2 Research structure and flow chart 47 3-3 TAB3Bi2Br7I2 (ABI) perovskite synthesis 50 3-4 2-D Phosphorene nanosheet synthesis 50 3-5 1-D g-C3N4 nanofiber synthesis 50 3-6 TAB3Bi2Br7I2 perovskite/g-C3N4 (ABI/CN) nanocomposite fabrication 51 3-7 Phosphorene/g-C3N4 (P/CN) nanocomposite fabrication 51 3-8 Amine functionalized iron-based metal-organic framework (NH2-MIL-101(Fe)) synthesis 52 3-9 Characterizing nanomaterial and modified optical fiber 52 3-10 Photo(electro)chemical measurements 54 3-10-1 Photoelectrode preparation via FTO glass plate 54 3-10-2 Optoelectrode preparation via polymeric optical fiber (POF) 54 3-10-3 Photoelectrochemical measurement 62 3-11 Photoelectrocatalytic degradation using organic pollutants in water 63 3-12 Photoelectrocatalytic hydrogen evolution reaction (HER) 64 3-13 Photocatalytic dual-fiber system in CO2 reduction 65 3-13-1 Hollow-fiber-membranes (HFMs) bundles fabrication 65 3-13-2 Dual-fiber system integration 65 3-13-3 Photocatalytic HCOOH measurement in a dual-fiber system 66 3-13-4 Conversion efficiency of HCOOH in carbon mass balance 66 3-13-5 Quantum efficiency calculation 67 CHAPTER 4 Results and Discussion 69 4-1 Characterizing 2-D phosphorene/1-D g-C3N4 (P/CN) nanocomposite 69 4-1-1 Morphologies of phosphorene, g-C3N4 nanofiber, and P/CN 69 4-1-2 Crystallinity of phosphorene, g-C3N4 nanofiber, and P/CN 71 4-1-3 Element states and functional groups of P/CN nanocomposite 73 4-1-4 Surface characterization of P/CN nanocomposite 75 4-2 Characterizing TAB3Bi2I7Br2 (ABI) perovskite/1-D g-C3N4 (ABI/CN) nanocomposite 77 4-2-1 Morphologies of ABI perovskite and ABI/CN 77 4-2-2 Crystallinity of ABI perovskite and ABI/CN 78 4-2-3 Chemical bonding and functional groups of ABI/CN nanocomposite 79 4-2-4 Surface characterization of ABI/CN nanocomposite 82 4-3 Optical properties of ABI/CN and P/CN nanocomposite 83 4-4 Photoelectrocatalytic performance in tandem PEC devices 88 4-5 PEC CIP destruction with H2 evolution in tandem PEC devices 95 4-6 Photoelectrocatalytic application comparison and effects in the simulated wastewater 99 4-7 Anodic optoelectrode fiber in photoelectrocatalytic degradation 115 4-7-1 Characterization of the morphology of the ITO, TAB3Bi2Br7I2 perovskite, and g-C3N4 layers in the modified POFs 115 4-7-2 Effects of light side-emission and utilization efficiency in anodic modified-POFs with different nanomaterials mass loading 118 4-7-3 Enhancing the photoconductivity in synergistic effects of ITO and ABI perovskite coatings on POFs 126 4-7-4 Pollutant degradation in water using optimized ITO plus ABI perovskite as a PEC-POF 131 4-8 Cathodic optoelectrode fiber in photoelectrocatalytic H2 evolution 140 4-8-1 Effects of light side-emission and utilization efficiency in anodic modified POFs with different nanomaterials mass loading 140 4-8-2 Enhancing the photoconductivity in synergistic effects of ITO and g-C3N4 coatings on POFs 147 4-8-3 H2 evolution in water splitting using cathodic PEC-POF electrode 149 4-9 Photocatalytic CO2 reduction in a dual-fiber system 153 4-9-1 Characterization of POF-NH2-MIL-101(Fe) 153 4-9-2 Effects of light side-emission and utilization efficiency in anodic modified POFs with different nanomaterials mass loading 159 4-9-3 HCOOH-production activity 163 4-9-4 Carbon mass balance in photocatalytic CO2 reduction 168 4-9-5 Quantum efficiency in photo(electro)catalysis 171 CHAPTER 5 Conclusion and Perspective 173 5-1. Conclusion 173 5-2. Perspectives 175 Reference 177

    [1] C. Zamora-Ledezma, D. Negrete-Bolagay, F. Figueroa, E. Zamora-Ledezma, M. Ni, F. Alexis, V. H. Guerrero, Heavy metal water pollution: A fresh look about hazards, novel and conventional remediation methods, Environ. Technol. Innovation 22 (2021) 101504.
    [2] R. K. Singh, S. Fernando, S. F. Baygi, N. Multari, S. M. Thagard, T. M. Holsen, Breakdown products from perfluorinated alkyl substances (PFAS) degradation in a plasma-based water treatment process, Environ. Sci. Technol. 53 (2019) 2731 – 2738
    [3] J. Jiang, Q. Zhang, X. Zhan, F. Chen, A multifunctional gelatin-based aerogel with superior pollutants adsorption, oil/water separation and photocatalytic properties, Chem. Eng. J. 358 (2019) 1539 – 1551.
    [4] K. Gallandat, R. C. Kolus, T.R. Julian, D. S. Lantagne, A systematic review of chlorine-based surface disinfection efficacy to inform recommendations for low-resource outbreak settings, Am. J. Infection Control. 49 (2021) 90 – 103.
    [5] A. Alam, W. U. Rahman, Z. U. Rahman, S. A. Khan, Z. Shah, K. Shaheen, H. Suo, M. N. Qureshi, S. B. Khan, E. M. Bakhsh, K. Akhtar, Photocatalytic degradation of the antibiotic ciprofloxacin in the aqueous solution using Mn/Co oxide photocatalyst, J. Mater. Sci. Mater. Electron. 33 (2022) 4255–4267.
    [6] G. S. Basarab, S. Ghorpade, L. Gibhard, R. Mueller, M. Njoroge, N. Peton, P. Govender, L. M. Massoudi, G. T. Robertson, A. J. Lenaerts, H. I. Boshoff, D. Joerss, T. Parish, T. F. Durand-Reville, M. Perros, V. Singh, K. Chibale, Spiropyrimidinetriones: a class of DNA gyrase inhibitors with activity against mycobacterium tuberculosis and without cross-resistance to fluoroquinolones, antimicrob agents chemother. 66 (2022) e02192-21.
    [7] V. A. Thai, V. D. Dang, N. T. Thuy, B. Pandit, T. K. Q. Vo, A. P. Khedulkar, Fluoroquinolones: Fate, effects on the environment and selected removal methods, J. Cleaner Prod. 418 (2023) 137762.
    [8] Y. Mu, C. Huang, H. Li, L. Chen, D. Zhang, Z. Yang, Electrochemical degradation of ciprofloxacin with a Sb-doped SnO2 electrode: performance, influencing factors and degradation pathways, RSC Adv. 9 (2019) 29796 – 29804.
    [9] S. S. Imam, R. Adnan, N. H. Mohd Kaus, Immobilization of BiOBr into cellulose acetate matrix as hybrid film photocatalyst for facile and multicycle degradation of ciprofloxacin, J. Alloys Compd. 843 (2020) 155990.
    [10] N. Genç, E. Can Dogan, M. Yurtsever, Bentonite for ciprofloxacin removal from aqueous solution, Water Sci. Technol. 68 (2013) 848 – 855.
    [11] N. D. Quang, W. Hu, H. S. Chang, P. C. Van, D. D. Viet, J. R. Jeong, D. Seo, E. Kim, C. Kim, D. Kim, Fe2O3 hierarchical tubular structure decorated with cobalt phosphide (CoP) nanoparticles for efficient photoelectrochemical water splitting, Chem. Eng. J. 417 (2021) 129278.
    [12] S. K. Saraswat, D. D. Rodene, R. B. Gupta, Recent advancements in semiconductor materials for photoelectrochemical water splitting for hydrogen production using visible light, Renewable Sustain. Energy Rev. 89 (2018) 228 – 248.
    [13] G. Vilardi, N. Verdone, R. Bubbico, Combined production of metallic-iron nanoparticles: exergy and energy analysis of two alternative processes using Hydrazine and NaBH4 as reducing agents, J. Taiwan Inst. Chem. Eng. 118 (2021) 97 – 111.
    [14] A. Fujishima, K. Honda, Electrochemical photolysis of water at a semiconductor electrode, Nature 238 (1972) 37 – 38.
    [15] M. G. Kibria, Z. Mi, Artificial photosynthesis using metal/nonmetal-nitride semiconductors: current status, prospects, and challenges, J. Mater. Chem. A. 4 (2016) 2801 – 2820.
    [16] J. W. Ager, M. R. Shaner, K. A. Walczak, I. D. Sharp, S. Ardo, Experimental demonstrations of spontaneous, solar-driven photoelectrochemical water splitting, Energy Environ. Sci. 8 (2015) 2811 – 2824.
    [17] T. Jafari, E. Moharreri, A. Amin, R. Miao, W. Song, S. Suib, Photocatalytic water splitting—the untamed dream: A review of recent advances, Molecules 21 (2016) 900.
    [18] A. Kubacka, M. Fernández-García, G. Colón, Advanced nanoarchitectures for solar photocatalytic applications, Chem. Rev. 112 (2012) 1555 – 1614.
    [19] S. C. Roy, O. K. Varghese, M. Paulose, C. A. Grimes, Toward solar fuels: Photocatalytic conversion of carbon dioxide to hydrocarbons, ACS Nano 4 (2010) 1259 – 1278.
    [20] P. Akhter, M. A. Farkhondehfal, S. Hernández, M. Hussain, A. Fina, G. Saracco, A. U. Khan, N. Russo, Environmental issues regarding CO2 and recent strategies for alternative fuels through photocatalytic reduction with titania-based materials, J Environ. Chem. Eng. 4 (2016) 3934 – 3953.
    [21] A. Demirbas, Potential applications of renewable energy sources, biomass combustion problems in boiler power systems and combustion related environmental issues, Prog. Energy Combust. Sci. 31 (2005) 171 – 192.
    [22] J. Schlaich, R. Bergermann, W. Schiel, G. Weinrebe, Design of commercial solar updraft tower systems—utilization of solar induced convective flows for power generation, J. Solar Energy Eng. 127 (2005) 117 – 124.
    [23] K. Kočí, L. Obalová, Z. Lacný, Photocatalytic reduction of CO2 over TiO2 based catalysts, Chem. Pap. 62 (2008) 1 – 9.
    [24] T. Abe, T. Yoshida, S. Tokita, F. Taguchi, H. Imaya, M. Kaneko, Factors affecting selective electrocatalytic CO2 reduction with cobalt phthalocyanine incorporated in a polyvinylpyridine membrane coated on a graphite electrode, J. Electroanal. Chem. 412 (1996) 125 – 132.
    [25] B. O’Regan, M. Gratzelt, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films, Nature 353 (1991) 737 – 740.
    [26] W. C. Chueh, S. M. Haile, Ceria as a Thermochemical reaction medium for selectively generating syngas or methane from H2O and CO2, ChemSusChem. 2 (2009) 735–739.
    [27] R. E. Blankenship, D. M. Tiede, J. Barber, G. W. Brudvig, G. Fleming, M. Ghirardi, M. R. Gunner, W. Junge, D. M. Kramer, A. Melis, T. A. Moore, C. C. Moser, D. G. Nocera, A. J. Nozik, D. R. Ort, W. W. Parson, R. C. Prince, R. T. Sayre, Comparing photosynthetic and photovoltaic efficiencies and recognizing the potential for improvement, Sci. 332 (2011) 805 – 809.
    [28] G. A. Olah, A. Goeppert, G. K. S. Prakash, Chemical recycling of carbon dioxide to methanol and dimethyl ether: From greenhouse gas to renewable, environmentally carbon neutral fuels and synthetic hydrocarbons, J. Org. Chem. 74 (2009) 487 – 498.
    [29] S. Garcia-Segura, E. Brillas, Applied photoelectrocatalysis on the degradation of organic pollutants in wastewaters, J. Photochem. Photobi. C Photochem. Rev. 31 (2017) 1 – 35.
    [30] P. Akhter, M. Hussain, G. Saracco, N. Russo, New nanostructured silica incorporated with isolated Ti material for the photocatalytic conversion of CO2 to fuels, Nanoscale Res. Lett. 9 (2014) 158.
    [31] M. Hussain, P. Akhter, N. Russo, G. Saracco, Novel Ti-KIT-6 material for the photocatalytic reduction of carbon dioxide to methane, Catal. Commun. 36 (2013) 58 – 62.
    [32] G. Qin, Y. Zhang, X. Ke, X. Tong, Z. Sun, M. Liang, S. Xue, Photocatalytic reduction of carbon dioxide to formic acid, formaldehyde, and methanol using dye-sensitized TiO2 film, Appl. Catal. B Environ. 129 (2013) 599 – 605.
    [33] W. Hou, W. H. Hung, P. Pavaskar, A. Goeppert, M. Aykol, S. B. Cronin, Photocatalytic conversion of CO2 to hydrocarbon fuels via plasmon-enhanced absorption and metallic interband transitions, ACS Catal. 1 (2011) 929 – 936.
    [34] J. Liao, W. Cui, J. Li, J. Sheng, H. Wang, X. Dong, P. Chen, G. Jiang, Z. Wang, F. Dong, nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4, Chem. Eng. J. 379 (2020) 122282.
    [35] E. M. Bayan, L. E. Pustovaya, M. G. Volkova, Recent advances in TiO2-based materials for photocatalytic degradation of antibiotics in aqueous systems, Environ. Technol. Innovation. 24 (2021) 101822.
    [36] B. Li, Y. Hu, Z. Shen, Z. Ji, L. Yao, S. Zhang, Y. Zou, D. Tang, Y. Qing, S. Wang, G. Zhao, X. Wang, Photocatalysis driven by near-infrared Light: Materials design and engineering for environmentally friendly photoreactions, ACS EST Eng. 1 (2021) 947 – 964.
    [37] F. Parrino, M. Bellardita, E. I. García-López, G. Marcì, V. Loddo, L. Palmisano, Heterogeneous photocatalysis for selective formation of high-value-added molecules: Some chemical and engineering aspects, ACS Catal. 8 (2018) 11191 – 11225.
    [38] S. Younis, K. H. Kim, Heterogeneous photocatalysis scalability for environmental remediation: Opportunities and challenges, Catal. 10 (2020) 1109.
    [39] X. Yang, D. Wang, Photocatalysis: From fundamental principles to materials and applications, ACS Appl. Energy Mater. 1 (2018) 6657 – 6693.
    [40] N. Singh, B. R. Goldsmith, Role of electrocatalysis in the remediation of water pollutants, ACS Catal. 10 (2020) 3365 – 3371.
    [41] J. Radjenovic, D. L. Sedlak, Challenges and opportunities for electrochemical processes as next-generation technologies for the treatment of contaminated water, Environ. Sci. Technol. 49 (2015) 11292–11302.
    [42] H. Hui, H. Wang, Y. Mo, Z. Yin, J. Li, Optimal design and evaluation of electrocatalytic reactors with nano-MnOx/Ti membrane electrode for wastewater treatment, Chem. Eng. J. 376 (2019) 120190.
    [43] Z. Wu, Z. Zhou, Y. Zhang, J. Wang, H. Shi, Q. Shen, G. Wei, G. Zhao, Simultaneous photoelectrocatalytic aromatic organic pollutants oxidation for hydrogen production promotion with a self-biasing photoelectrochemical cell, Electrochim. Acta. 254 (2017) 140–147.
    [44] Z. Wang, S. Xu, J. Cai, J. Ma, G. Zhao, Perspective on photoelectrocatalytic removal of refractory organic pollutants in water systems, ACS EST Eng. 2 (2022) 1001–1014.
    [45] J. R. Hemmerling, A. Mathur, S. Linic, Design principles for efficient and stable water splitting photoelectrocatalysts, Acc. Chem. Res. 54 (2021) 1992 – 2002.
    [46] E. Brillas, A. Serrà, S. Garcia-Segura, Biomimicry designs for photoelectrochemical systems: Strategies to improve light delivery efficiency, Curr. Opin. Electrochem. 26 (2021) 100660.
    [47] Y. Hu, A single TiO2-coated side-glowing optical fiber for photocatalytic wastewater treatment, Chinese Sci Bull. 50 (2005) 1979.
    [48] H. M. Deng, C. Wang, W. J. Cai, Y. Liu, L. X. Zhang, Managing the water-energy-food nexus in China by adjusting critical final demands and supply chains: An input-output analysis, Sci. Total Environ.. 720 (2020) 137635.
    [49] N. F. F. Moreira, M. J. Sampaio, A. R. Ribeiro, C. G. Silva, J. L. Faria, A. M. T. Silva, Metal-free g-C3N4 photocatalysis of organic micropollutants in urban wastewater under visible light, Appl. Catal. B Environ. 248 (2019) 184 – 192.
    [50] H. O’Neal Tugaoen, S. Garcia-Segura, K. Hristovski, P. Westerhoff, Compact light-emitting diode optical fiber immobilized TiO2 reactor for photocatalytic water treatment, Sci. Total Environ. 613 – 614 (2018) 1331 – 1338.
    [51] X. H. Wang, H. L. Liu, W. X. Zhang, W. Z. Cheng, X. Liu, X. M. Li, J. H. Wu, Synthesis and characterization of polymer-coated AgZnO nanoparticles with enhanced photocatalytic activity, RSC Adv. 4 (2014) 44011 – 44017.
    [52] L. Lin, H. Wang, H. Luo, P. Xu, Photocatalytic treatment of desalination concentrate using optical fibers coated with nanostructured thin films: Impact of water chemistry and seasonal climate variations, Photochem. Photobiol. 92 (2016) 379 – 387.
    [53] Y. Wu, L. Zhong, J. Yuan, W. Xiang, X. Xin, H. Liu, H. Luo, L. Li, M. Chen, D. Zhong, X. Zhang, N. Zhong, H. Chang, Photocatalytic optical fibers for degradation of organic pollutants in wastewater: a review, Environ. Chem. Lett. 19 (2021) 1335 – 1346.
    [54] C. J. Chen, C. C. Wu, L. T. Hsieh, K. C. Chen, Treatment of trichloroethylene with photocatalyst-coated optical fiber, Water 11 (2019) 2391.
    [55] H. Wu, H. L. Tan, C. Y. Toe, J. Scott, L. Wang, R. Amal, Y. H. Ng, Photocatalytic and photoelectrochemical systems: Similarities and differences, Adv. Mater. 32 (2020) 1904717.
    [56] Y. Song, L. Ling, P. Westerhoff, C. Shang, Evanescent waves modulate energy efficiency of photocatalysis within TiO2 coated optical fibers illuminated using LEDs, Nat. Commun. 12 (2021) 4101.
    [57] Z. Zhao, M. Lanzarini-Lopes, E. Westerhoff, X. Long, H. Rho, Y. Bi, L. Ling, P. Westerhoff, Evanescent wave interactions with nanoparticles on optical fiber modulate side emission of germicidal ultraviolet light, Environ. Sci.: Nano 8 (2021) 2441–2452.
    [58] L. Ling, H. Tugaoen, J. Brame, S. Sinha, C. Li, J. Schoepf, K. Hristovski, J. H. Kim, C. Shang, P. Westerhoff, Coupling light emitting diodes with photocatalyst-coated optical fibers improves quantum yield of pollutant oxidation, Environ. Sci. Technol. 51 (2017) 13319 – 13326.
    [59] H. Wang, Y. Xiong, C. Wu, H. Zhu, Y. Chen, F. Xu, Optical fiber tip integrated photoelectrochemical sensors, Opt. Express. 30 (2022) 6818.
    [60] C. Peng, G. Reid, H. Wang, P. Hu, Perspective: Photocatalytic reduction of CO2 to solar fuels over semiconductors, J. Chem. Phys. 147 (2017) 030901.
    [61] J. Low, J. Yu, M. Jaroniec, S. Wageh, A. A. Al-Ghamdi, Heterojunction photocatalysts, Adv. Mater. 29 (2017) 1601694.
    [62] T. H. Wang, M. J. Chen, Y. S. Lai, R. A. Doong, P. Westerhoff, B. Rittmann, High-Efficiency photocatalytic H2O2 production in a dual optical– and membrane–fiber system, ACS Sustain. Chem. Eng. 11 (2023) 6465–6473.
    [63] N. Cennamo, M. Pesavento, L. Zeni, A review on simple and highly sensitive plastic optical fiber probes for bio-chemical sensing, Sens. Actuators B Chem. 331 (2021) 129393.
    [64] P. Sezemsky, D. Burnat, J. Kratochvil, H. Wulff, A. Kruth, K. Lechowicz, M. Janik, R. Bogdanowicz, M. Cada, Z. Hubicka, P. Niedziałkowski, W. Białobrzeska, V. Stranak, M. Śmietana, Tailoring properties of indium tin oxide thin films for their work in both electrochemical and optical label-free sensing systems, Sens. Actuators B Chem. 343 (2021) 130173.
    [65] K. Baba, S. Bulou, P. Choquet, N. D. Boscher, Photocatalytic anatase TiO2 thin films on polymer optical fiber using atmospheric-pressure plasma, ACS Appl. Mater. Interfaces 9 (2017) 13733 – 13741.
    [66] S. Wu, X. Quan, Design principles and strategies of photocatalytic H2O2 production from O2 reduction, ACS EST Eng. 2 (2022) 1068 – 1079.
    [67] P. Vishnoi, K. Pramoda, U. Gupta, M. Chhetri, R. G. Balakrishna, C. N. R. Rao, Covalently linked heterostructures of phosphorene with MoS2/MoSe2 and their remarkable hydrogen evolution reaction activity, ACS Appl. Mater. Interfaces 11 (2019) 27780 – 27787.
    [68] J. Pang, A. Bachmatiuk, Y. Yin, B. Trzebicka, L. Zhao, L. Fu, R. G. Mendes, T. Gemming, Z. Liu, M. H. Rummeli, Applications of phosphorene and black phosphorus in energy conversion and storage devices, Adv. Energy Mater. 8 (2018) 1702093.
    [69] J. Kang, J. D. Wood, S. A. Wells, J. H. Lee, X. Liu, K. S. Chen, M. C. Hersam, Solvent exfoliation of electronic-grade, two-dimensional black phosphorus, ACS Nano 9 (2015) 3596 – 3604.
    [70] M. Z. Rahman, C. W. Kwong, K. Davey, S. Z. Qiao, 2D phosphorene as a water splitting photocatalyst: fundamentals to applications, Energy Environ. Sci. 9 (2016) 709 – 728.
    [71] M. Zhu, Z. Sun, M. Fujitsuka, T. Majima, Z-Scheme Photocatalytic Water Splitting on a 2D heterostructure of black phosphorus/bismuth vanadate using visible light, Angew. Chem. Int. Ed. 57 (2018) 2160 – 2164.
    [72] L. Shao, H. Sun, L. Miao, X. Chen, M. Han, J. Sun, S. Liu, L. Li, F. Cheng, J. Chen, Facile preparation of NH2-functionalized black phosphorene for the electrocatalytic hydrogen evolution reaction, J. Mater. Chem. A. 6 (2018) 2494 – 2499.
    [73] Y. Gan, X. X. Xue, X. X. Jiang, Z. Xu, K. Chen, J. F. Yu, Y. Feng, Chemically modified phosphorene as efficient catalyst for hydrogen evolution reaction, J. Phys.: Condens. Matter. 32 (2020) 025202.
    [74] T. H. Wang, T. K. A. Nguyen, R. A. Doong, Phosphorene nanosheet decorated graphitic carbon nitride nanofiber for photoelectrochemically enhanced hydrogen evolution from water splitting, J. Taiwan Inst. Chem. Eng. 141 (2022) 104577.
    [75] M. Leng, Z. Chen, Y. Yang, Z. Li, K. Zeng, K. Li, G. Niu, Y. He, Q. Zhou, J. Tang, Lead-free, blue emitting bismuth halide perovskite quantum dots, Angew. Chem. Int. Ed. 55 (2016) 15012 – 15016.
    [76] A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, Organometal halide perovskites as visible-light sensitizers for photovoltaic cells, J. Am. Chem. Soc. 131 (2009) 6050 – 6051.
    [77] W. S. Yang, J. H. Noh, N. J. Jeon, Y. C. Kim, S. Ryu, J. Seo, S. I. Seok, High-performance photovoltaic perovskite layers fabricated through intramolecular exchange, Sci. 348 (2015) 1234 – 1237.
    [78] Y. Xu, M. Cao, S. Huang, Recent advances and perspective on the synthesis and photocatalytic application of metal halide perovskite nanocrystals, Nano Res. 14 (2021) 3773 – 3794.
    [79] N. Wang, Y. Zhou, M. G. Ju, H. F. Garces, T. Ding, S. Pang, X. C. Zeng, N. P. Padture, X. W. Sun, Heterojunction-depleted lead-free perovskite solar cells with coarse-grained B-γ-CsSnI3 thin films, Adv. Energy Mater. 6 (2016) 1601130.
    [80] E. T. McClure, M. R. Ball, W. Windl, P. M. Woodward, Cs2AgBiX6 (X = Br, Cl): New visible light absorbing, lead-free halide perovskite semiconductors, Chem. Mater. 28 (2016) 1348–1354.
    [81] A. Swarnkar, V. K. Ravi, A. Nag, Beyond colloidal cesium lead halide perovskite nanocrystals: Analogous metal halides and doping, ACS Energy Lett. 2 (2017) 1089 – 1098.
    [82] G. Volonakis, M. R. Filip, A. A. Haghighirad, N. Sakai, B. Wenger, H. J. Snaith, F. Giustino, Lead-free halide double perovskites via heterovalent substitution of noble metals, J. Phys. Chem. Lett. 7 (2016) 1254 – 1259.
    [83] T. Paul, D. Das, B. K. Das, S. Sarkar, S. Maiti, K. K. Chattopadhyay, CsPbBrCl2/g-C3N4 type II heterojunction as efficient visible range photocatalyst, J. Hazard. Mater. 380 (2019) 120855.
    [84] S. Y. Kim, Y. Yun, S. Shin, J. H. Lee, Y. W. Heo, S. Lee, Wide range tuning of band gap energy of A3B2X9 perovskite-like halides, Scr. Mater. 166 (2019) 107 – 111.
    [85] F. Ünlü, M. Deo, S. Mathur, T. Kirchartz, A. Kulkarni, Bismuth-based halide perovskite and perovskite-inspired light absorbing materials for photovoltaics, J. Phys. D: Appl. Phys. 55 (2022) 113002.
    [86] S. S. Bhosale, A. K. Kharade, E. Jokar, A. Fathi, S. Chang, E. W. G. Diau, Mechanism of photocatalytic CO2 reduction by bismuth-based perovskite nanocrystals at the gas–solid interface, J. Am. Chem. Soc. 141 (2019) 20434 –20442.
    [87] P. Kour, M. Chenna Reddy, R. Naphade, S. Ogale, Quaternary alkylammonium salt incorporated 2D/3D mixed halide perovskite with highly enhanced photoluminescence and arrested iodide/bromide phase segregation, APL Mater. 6 (2018) 086107.
    [88] S. Jin, Y. Wei, B. Rong, Y. Fang, Y. Zhao, Q. Guo, Y. Huang, L. Fan, J. Wu, Improving perovskite solar cells photovoltaic performance using tetrabutylammonium salt as additive, J. Power Sources. 450 (2020) 227623.
    [89] J. Gu, G. Yan, Y. Lian, Q. Mu, H. Jin, Z. Zhang, Z. Deng, Y. Peng, Bandgap engineering of a lead-free defect perovskite Cs3Bi2I9 through trivalent doping of Ru3+, RSC Adv. 8 (2018) 25802 – 25807.
    [90] A. Sudhaik, P. Raizada, S. Thakur, R.V. Saini, A. K. Saini, P. Singh, V. Kumar Thakur, V. H. Nguyen, A. A. P. Khan, A. M. Asiri, Synergistic photocatalytic mitigation of imidacloprid pesticide and antibacterial activity using carbon nanotube decorated phosphorus doped graphitic carbon nitride photocatalyst, J. Taiwan Inst. Chem. Eng. 113 (2020) 142 – 154.
    [91] Y. Li, M. Zhou, B. Cheng, Y. Shao, Recent advances in g-C3N4-based heterojunction photocatalysts, J. Mater. Sci. Technol. 56 (2020) 1 – 17.
    [92] N. Iqbal, A. Afzal, I. Khan, M. S. Khan, A. Qurashi, Molybdenum impregnated g-C3N4 nanotubes as potentially active photocatalyst for renewable energy applications, Sci. Rep. 11 (2021) 16886.
    [93] N. Nie, L. Zhang, J. Fu, B. Cheng, J. Yu, Self-assembled hierarchical direct Z-scheme g-C3N4/ZnO microspheres with enhanced photocatalytic CO2 reduction performance, Appl. Surf. Sci. 441 (2018) 12 – 22.
    [94] M. Raaja Rajeshwari, S. Kokilavani, S. Sudheer Khan, Recent developments in architecturing the g-C3N4 based nanostructured photocatalysts: Synthesis, modifications and applications in water treatment, Chemosphere. 291 (2022) 132735.
    [95] S. M. Abu-Sari, B. C. Ang, W. M. A. Wan Daud, M. F. A. Patah, Visible-light-driven photocatalytic hydrogen production on defective, sulfur self-doped g-C3N4 nanofiber fabricate via electrospinning method, J. Environ. Chem. Eng. 11 (2023) 109318.
    [96] Q. Chen, Q. W. Chen, C. Zhuang, P. P. Tang, N. Lin, L. Q. Wei, Controlled release of drug molecules in metal–organic framework material HKUST-1, Inorg. Chem. Commun. 79 (2017) 78 – 81.
    [97] C. P. Raptopoulou, Metal-organic frameworks: Synthetic methods and potential applications, Mater. 14 (2021) 310.
    [98] Z. Zhang, X. Li, B. Liu, Q. Zhao, G. Chen, Hexagonal microspindle of NH2-MIL-101(Fe) metal–organic frameworks with visible-light-induced photocatalytic activity for the degradation of toluene, RSC Adv. 6 (2016) 4289 – 4295.
    [99] Y. Wu, J. Chen, H. Che, X. Gao, Y. Ao, P. Wang, Boosting 2e- oxygen reduction reaction in garland carbon nitride with carbon defects for high-efficient photocatalysis-self-Fenton degradation of 2,4-dichlorophenol, Appl. Catal. B Environ. 307 (2022) 121185.
    [100] M. Wang, X. Dong, Z. Meng, Z. Hu, Y. Lin, C. Peng, H. Wang, C. Pao, S. Ding, Y. Li, Q. Shao, X. Huang, An efficient interfacial synthesis of two‐dimensional metal–organic framework nanosheets for electrochemical hydrogen peroxide production, Angew. Chem. Int. Ed. 60 (2021) 11190 – 11195.
    [101] A. Lais, M. A. Gondal, M. A. Dastageer, F. F. Al-Adel, Experimental parameters affecting the photocatalytic reduction performance of CO2 to methanol: A review, Int. J. Energy Res. 42 (2018) 2031–2049.
    [102] S. C. Shit, I. Shown, R. Paul, K. H. Chen, J. Mondal, L. C. Chen, Integrated nano-architectured photocatalysts for photochemical CO2 reduction, Nanoscale. 12 (2020) 23301 – 23332.
    [103] A. Helal, S. Shaheen Shah, M. Usman, M.Y. Khan, Md.A. Aziz, M. Mizanur Rahman, Potential applications of nickel‐based metal‐organic frameworks and their derivatives, Chem. Record 22 (2022) e202200055.
    [104] D. Wang, R. Huang, W. Liu, D. Sun, Z. Li, Fe-based MOFs for photocatalytic CO2 reduction: Role of coordination unsaturated sites and dual excitation pathways, ACS Catal. 4 (2014) 4254 – 4260.
    [105] M. Almáši, V. Zeleňák, P. Palotai, E. Beňová, A. Zeleňáková, Metal-organic framework MIL-101(Fe)-NH2 functionalized with different long-chain polyamines as drug delivery system, Inorg. Chem. Commun. 93 (2018) 115 – 120.
    [106] T. Shesh, E. Eustance, Y. J. Lai, B. E. Rittmann, Characterization of CO2 flux through hollow-fiber membranes using pH modeling, J. Membr. Sci. 592 (2019) 117389.
    [107] J. Fu, K. Jiang, X. Qiu, J. Yu, M. Liu, Product selectivity of photocatalytic CO2 reduction reactions, Mater. Today 32 (2020) 222–243.
    [108] M. C. Watts, L. Picco, F. S. Russell-Pavier, P. L. Cullen, T. S. Miller, S. P. Bartuś, O. D. Payton, N. T. Skipper, V. Tileli, C.A. Howard, Production of phosphorene nanoribbons, Nature 568 (2019) 216–220.
    [109] P. Yasaei, B. Kumar, T. Foroozan, C. Wang, M. Asadi, D. Tuschel, J. E. Indacochea, R. F. Klie, A. Salehi-Khojin, High-quality black phosphorus atomic layers by liquid-phase exfoliation, Adv. Mater. 27 (2015) 1887 – 1892.
    [110] C. Noda, Y. Asakura, K. Shiraki, A. Yamakata, S. Yin, Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNO activity, Chem. Eng. J. 390 (2020) 124616.
    [111] A. Savateev, M. Antonietti, Ionic carbon nitrides in solar hydrogen production and organic synthesis: Exciting chemistry and economic advantages, ChemCatChem. 11 (2019) 6166 – 6176.
    [112] D. A. Reddy, E. H. Kim, M. Gopannagari, Y. Kim, D. P. Kumar, T. K. Kim, Few layered black phosphorus/MoS2 nanohybrid: A promising co-catalyst for solar driven hydrogen evolution, Appl. Catal. B Environ. 241 (2019) 491 – 498.
    [113] A. Muthurasu, V. Maruthapandian, H. Y. Kim, Metal-organic framework derived Co3O4/MoS2 heterostructure for efficient bifunctional electrocatalysts for oxygen evolution reaction and hydrogen evolution reaction, Appl. Catal. B Environ. 248 (2019) 202 – 210.
    [114] H. Inoki, G. Seo, K. Kanai, Synthesis of graphitic carbon nitride under low ammonia partial pressure, Appl. Surface Sci. 534 (2020) 147569.
    [115] T. B. Nguyen, C. P. Huang, R. A. Doong, C. W. Chen, C. D. Dong, Visible-light photodegradation of sulfamethoxazole (SMX) over Ag-P-codoped g-C3N4 (Ag-P@UCN) photocatalyst in water, Chem. Eng. J. 384 (2020) 123383.
    [116] R. S. Sahu, Y. Shih, W. L. Chen, New insights of metal free 2D graphitic carbon nitride for photocatalytic degradation of bisphenol A, J. Hazard. Mater. 402 (2021) 123509.
    [117] S. Yang, H. Li, H. Li, H. Li, W. Qi, Q. Zhang, J. Zhu, P. Zhao, L. Chen, Rational design of 3D carbon nitrides assemblies with tunable nano-building blocks for efficient visible-light photocatalytic CO2 conversion, Appl. Catal. B Environ. 316 (2022) 121612.
    [118] D. P. Dutta, D. Dagar, Efficient selective sorption of cationic organic pollutant from water and its photocatalytic degradation by AlVO4 /g-C3N4 Nanocomposite, J. Nanosci Nanotechnol. 20 (2020) 2179 – 2194.
    [119] R. Prasannachandran, T. V. Vineesh, A. Anil, B. M. Krishna, M. M. Shaijumon, Functionalized phosphorene quantum dots as efficient electrocatalyst for oxygen evolution reaction, ACS Nano 12 (2018) 11511 – 11519.
    [120] M. Aleksandrzak, M. Kijaczko, W. Kukulka, D. Baranowska, M. Baca, B. Zielinska, E. Mijowska, Boosting of photocatalytic hydrogen evolution via chlorine doping of polymeric carbon nitride, Beilstein J. Nanotechnol. 12 (2021) 473 – 484.
    [121] M. Baca, M. Dworczak, M. Aleksandrzak, E. Mijowska, R. J. Kaleńczuk, B. Zielińska, Mesoporous carbon/graphitic carbon nitride spheres for photocatalytic H2 evolution under solar light irradiation, Inter. J. Hydrogen Energy. 45 (2020) 8618 – 8628.
    [122] A. A. Hussain, Constructing caesium-based lead-free perovskite photodetector enabling self-powered operation with extended spectral response, ACS Appl. Mater. Interfaces 12 (2020) 46317 – 46329.
    [123] N. Tewari, S. B. Shivarudraiah, J. E. Halpert, Photorechargeable lead-free perovskite lithium-ion batteries using hexagonal Cs3Bi2I9 nanosheets, Nano Lett. 21 (2021) 5578–5585.
    [124] N. G. Park, K. Zhu, Scalable fabrication and coating methods for perovskite solar cells and solar modules, Nat. Rev. Mater. 5 (2020) 333 – 350.
    [125] T. B. Nguyen, P. N. T. Ho, C. W. Chen, C. P. Huang, R. A. Doong, C. D. Dong, A Z-scheme NiCo2O4 /S codoped 1D g-C3N4 heterojunction for solar-light-sensitive photocatalytic degradation of antibiotics in aqueous solutions exemplified by tetracycline, Environ. Sci. Nano 9 (2022) 229 – 242.
    [126] Y. Liu, H. Zhang, J. Ke, J. Zhang, W. Tian, X. Xu, X. Duan, H. Sun, M. O Tade, S. Wang, 0D (MoS2)/2D (g-C3N4) heterojunctions in Z-scheme for enhanced photocatalytic and electrochemical hydrogen evolution, Appl. Catal. B: Environ. 228 (2018) 64 – 74.
    [127] A. Bafaqeer, M. Tahir, N. A. S. Amin, Well-designed ZnV2O6/g-C3N4 2D/2D nanosheets heterojunction with faster charges separation via pCN as mediator towards enhanced photocatalytic reduction of CO2 to fuels, Appl. Catal. B Environ. 242 (2019) 312 – 326.
    [128] X. Liu, X. Wang, T. Zhang, Y. Miao, Z. Qin, Y. Chen, Y. Zhao, Organic tetrabutylammonium cation intercalation to heal inorganic CsPbI3 perovskite, Angew. Chem. Int. Ed. 60 (2021) 12351 – 12355.
    [129] C. Lai, M. Zhang, B. Li, D. Huang, G. Zeng, L. Qin, X. Liu, H. Yi, M. Cheng, L. Li, Z. Chen, L. Chen, Fabrication of CuS/BiVO4 (040) binary heterojunction photocatalysts with enhanced photocatalytic activity for ciprofloxacin degradation and mechanism insight, Chem. Eng. J. 358 (2019) 891 – 902.
    [130] S. M. N. Jeghan, J. Y. Do, M. Kang, Fabrication of flower-like copper cobaltite/graphitic-carbon nitride (CuCo2O4/g-C3N4) composite with superior photocatalytic activity, J. Ind. Eng. Chem. 57 (2018) 405 – 415.
    [131] L. Chen, S. Yang, Q. Zhang, J. Zhu, P. Zhao, Rational design of {001}-faceted TiO2 nanosheet arrays/graphene foam with superior charge transfer interfaces for efficient photocatalytic degradation of toxic pollutants, Sep. Purif. Technol. 265 (2021) 118444.
    [132] T. Hisatomi, J. Kubota, K. Domen, Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting, Chem. Soc. Rev. 43 (2014) 7520 – 7535.
    [133] C. A. Igwegbe, S. N. Oba, C. O. Aniagor, A. G. Adeniyi, J. O. Ighalo, Adsorption of ciprofloxacin from water: A comprehensive review, J. Ind. Eng. Chem. 93 (2021) 57 – 77.
    [134] J. Hubeny, M. Harnisz, E. Korzeniewska, M. Buta, W. Zieliński, D. Rolbiecki, J. Giebułtowicz, G. Nałęcz-Jawecki, G. Płaza, Industrialization as a source of heavy metals and antibiotics which can enhance the antibiotic resistance in wastewater, sewage sludge and river water, PLOS ONE 16 (2021) e0252691.
    [135] M. Sadeghi, W. Liu, T. G. Zhang, P. Stavropoulos, B. Levy, Role of photoinduced charge carrier separation distance in heterogeneous photocatalysis: Oxidative degradation of CH3OH vapor in contact with Pt/TiO2 and cofumed TiO2−Fe2O3, J. Phys. Chem. 100 (1996) 19466–19474.
    [136] Z. Nekoukar, Z. Zakariaei, F. Taghizadeh, F. Musavi, E. S. Banimostafavi, A. Sharifpour, N. E. Ghuchi, M. Fakhar, R. Tabaripour, S. Safanavaei, Methanol poisoning as a new world challenge: A review, Ann. Med. Surg. 66 (2021) 102445.
    [137] Q. Xiang, J. Yu, P.K. Wong, Quantitative characterization of hydroxyl radicals produced by various photocatalysts, J. Colloid Interface Sci. 357 (2011) 163 – 167.
    [138] A. Monney, E. Barsch, P. Sponholz, H. Junge, R. Ludwig, M. Beller, Base-free hydrogen generation from methanol using a bi-catalytic system, Chem. Commun. 50 (2014) 707 – 709.
    [139] X. Wang, Q. Meng, L. Gao, Z. Jin, J. Ge, C. Liu, W. Xing, Recent progress in hydrogen production from formic acid decomposition, Int. J. Hydrogen Energy. 43 (2018) 7055 – 7071.
    [140] J. Z. Y. Tan, N. M. Nursam, F. Xia, M. A. Sani, W. Li, X. Wang, R.A. Caruso, High-performance coral reef-like carbon nitrides: Synthesis and application in photocatalysis and heavy metal ion adsorption, ACS Appl. Mater. Interfaces 9 (2017) 4540 – 4547.
    [141] S. Lotfi, K. Fischer, A. Schulze, A. I. Schäfer, Photocatalytic degradation of steroid hormone micropollutants by TiO2-coated polyethersulfone membranes in a continuous flow-through process, Nat. Nanotechnol. 17 (2022) 417 – 423.
    [142] F. Ghamari, D. Raoufi, J. Arjomandi, Influence of thickness on crystallographic, stereometric, optoelectronic, and electrochemical characteristics of electron-beam deposited indium tin oxide thin films, Mater. Chem. Phys. 260 (2021) 124051.
    [143] K. Esquivel, L. G. Arriaga, F. J. Rodríguez, L. Martínez, L. A. Godínez, Development of a TiO2 modified optical fiber electrode and its incorporation into a photoelectrochemical reactor for wastewater treatment, Water Res. 43 (2009) 3593 – 3603.
    [144] R. H. N. Frazão, D. G. Della Rocca, S. M. D. Amorim, R. A. Peralta, C. D. Moura-Nickel, A. De Noni, R. D. F. P. M. Moreira, Plastic optical fibres applied on the photocatalytic degradation of phenol with Ag2MoO4 and ß-Ag2MoO4/Ag3PO4 under visible light, Environ. Technol. 42 (2021) 1271 – 1282.
    [145] L. Lin, H. Wang, P. Xu, Immobilized TiO2-reduced graphene oxide nanocomposites on optical fibers as high performance photocatalysts for degradation of pharmaceuticals, Chem. Eng. J. 310 (2017) 389 – 398.
    [146] Y. Zhang, G. Shan, F. Dong, C. Wang, L. Zhu, Glass fiber supported BiOI thin-film fixed-bed photocatalytic reactor for water decontamination under solar light irradiation, J. Environ. Sci. 80 (2019) 277 – 286.
    [147] J. S. Roy, G. Dugas, S. Morency, Y. Messaddeq, Rapid degradation of Rhodamine B using enhanced photocatalytic activity of MoS2 nanoflowers under concentrated sunlight irradiation, Phys. E Low-Dimensional Syst. Nanostruct. 120 (2020) 114114.
    [148] K. M. L. Taylor-Pashow, J. Della Rocca, Z. Xie, S. Tran, W. Lin, Postsynthetic modifications of iron-carboxylate nanoscale metal−organic frameworks for imaging and drug delivery, J. Am. Chem. Soc. 131 (2009) 14261 – 14263.
    [149] X. Li, W. Guo, Z. Liu, R. Wang, H. Liu, Quinone-modified NH2-MIL-101(Fe) composite as a redox mediator for improved degradation of bisphenol A, J. Hazard. Mater. 324 (2017) 665 – 672.
    [150] Q. Xie, Y. Li, Z. Lv, H. Zhou, X. Yang, J. Chen, H. Guo, Effective adsorption and removal of phosphate from aqueous solutions and eutrophic water by Fe-based MOFs of MIL-101, Sci. Rep. 7 (2017) 3316.
    [151] Tuan. A. Vu, Giang. H. Le, Canh. D. Dao, Lan. Q. Dang, Kien. T. Nguyen, Phuong.T. Dang, Hoa. T. K. Tran, Quang. T. Duong, Tuyen. V. Nguyen, Gun. D. Lee, Isomorphous substitution of Cr by Fe in MIL-101 framework and its application as a novel heterogeneous photo-Fenton catalyst for reactive dye degradation, RSC Adv. 4 (2014) 41185 – 41194.
    [152] L. Shen, S. Liang, W. Wu, R. Liang, L. Wu, Multifunctional NH2-mediated zirconium metal–organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(vi), Dalton Trans. 42 (2013) 13649.
    [153] C. Hu, Z. Jiang, C. Yang, X. Wang, X. Wang, S. Zhen, D. Wang, L. Zhan, C. Huang, Y. Li, Efficient and sustainable in situ photo‐fenton reaction to remove phenolic pollutants by NH2‐MIL‐101(Fe)/Ti3C2Tx schottky‐heterojunctions, Chem. A Eur. J. 28(54) (2022) e202201437.
    [154] P. Huang, L. Yao, Q. Chang, Y. Sha, G. Jiang, S. Zhang, Z. Li, Room-temperature preparation of highly efficient NH2-MIL-101(Fe) catalyst: The important role of –NH2 in accelerating Fe(III)/Fe(II) cycling, Chemosphere. 291 (2022) 133026.
    [155] Y. Cai, J. Feng, X. Tan, X. Wang, Z. Lv, W. Chen, M. Fang, H. Liu, X. Wang, Efficient capture of ReO4- on magnetic amine-functionalized MIL-101(Cr): Revealing from selectivity to mechanism, Sci. Total Environ. 771 (2021) 144840.
    [156] Y. Yao, H. Hu, H. Zheng, H. Hu, Y. Tang, X. Liu, S. Wang, Nonprecious bimetallic Fe, Mo-embedded N-enriched porous biochar for efficient oxidation of aqueous organic contaminants, J. Hazard. Mater. 422 (2022) 126776.
    [157] V. D. Doan, B. A. Huynh, H. A. L. Pham, Y. Vasseghian, V. T. Le, Cu2O/Fe3O4/MIL-101(Fe) nanocomposite as a highly efficient and recyclable visible-light-driven catalyst for degradation of ciprofloxacin, Environ. Res. 201 (2021) 111593.

    QR CODE