研究生: |
朱哲毅 Chu, Che-Yi |
---|---|
論文名稱: |
結晶性嵌段共聚物摻合物與奈米複合材料之自組織行為研究 Self-Organization Behavior of Crystalline Block Copolymer Blends and Nanocomposites |
指導教授: |
陳信龍
Chen, Hsin-Lung |
口試委員: |
陳信龍
蘇安仲 石天威 蔡敬誠 吳仁傑 鄭有舜 |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2011 |
畢業學年度: | 99 |
語文別: | 中文 |
論文頁數: | 145 |
中文關鍵詞: | 結晶 、嵌段共聚物摻合物 、高度缺陷晶體 、ordered bicontinuous double diamond (OBDD) 、gyroid 、order-order transition 、具立體規則性結構的嵌段共聚物 、奈米粒子 、奈米複合材料 、分散形態 |
外文關鍵詞: | crystallization, block copolymer blends, highly defective crystals, ordered bicontinuous double diamond (OBDD), gyroid, order-order transition, stereoregular block copolymer, nanoparticles, nanocomposites, dispersion state |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Diblock copolymers are known to be able to self-assemble into a variety of long-range ordered nanostructures due to the segregation between the repulsive block chains. Depending on the crystallizability of the constituting blocks, diblock copolymers can be classified into amorphous-amorphous, crystalline-amorphous, and crystalline-crystalline diblocks. This thesis is concentrated on studying the unique self-assembly and crystallization behavior of the former two diblock systems.
For amorphous-amorphous diblock coplymers, here we report the existence of a stable ordered bicontinuous double diamond (OBDD) structure in a diblock copolymer composing of a stereoregular block. A slightly asymmetric syndiotactic polypropylene-block-polystyrene (sPP-b-PS) as cast from xylene was found to display OBDD morphology. When the OBDD-forming copolymer was heated, this structure transformed to a gyroid phase at ca. 155 oC. Interestingly, OBDD was recovered upon cooling, indicating that it was a thermodynamically stable structure for sPP-b-PS, which was in contradiction to the conventional view (i.e. OBDD has always been considered as an unstable structure relative to gyroid for block copolymers). We propose that the larger free energy cost encountered in OBDD due to the larger packing frustration may be compensated sufficiently by the release of free energy due to locally ordered packing of the conformationally ordered segments of sPP blocks and thereby stabilized the OBDD structure at the lower temperatures.
The crystallization behavior of the binary blends of two crystalline-amorphous diblock copolymers bearing chemically identical amorphous block was systematically explored in this thesis. Two sub-systems were studied, namely, (1) blend of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) and polystyrene-block-poly(L-lactide) (PS-b-PLLA) and (2) blend of isotactic polypropylene-block-polystyrene (iPP-b-PS) and syndiotactic polypropylene-block-polystyrene blends (sPP-b-PS). PEO and PLLA blocks are chemically different, while, iPP and sPP blocks have the same chemical composition but differet stereochemistry. In the melt stat, PEO and PLLA blocks (and iPP and sPP blocks) formed the lamellar microdomains by the cosurfactant effect. It was found that the constraint imposed by the junction points localized at the lamellar interface and the nanoscale confinement effect significantly perturbed the crystallization behavior comparing to their corresponding homopolymer blends. The highly defective PLLA and sPP crystalline domains were formed in which the crystalline stems were intervened by the PEO and iPP chains, respectively. Furthermore, the originally immiscible iPP and sPP homopolymers in the melt were found to become a miscible binary pair in the corresponding diblock copolymers with PS. This may be attributed to that the entropic gain from the moving of the junction points at the interface and the mixing of iPP and sPP blocks in the microdomains may effectively compensate the slightly positive enthalpy of mixing arising from the repulsion between iPP and sPP.
Finally, we showed that the polymerization rate strongly affected the nanoparticle dispersion in the SiO2/PMMA nanocomposite derived by mixing the surface-modified SiO2 nanoparticles with MMA monomer. At slower polymerization, smaller clusters of nanoparticles were formed in which the SiO2 nanoparticles were more densely packed. Contrarily, the particles formed larger clusters in which the interparticle distance became larger at faster polymerization rate. The entropic effect arising from the growing PMMA chains might play an important role governing the final dispersion state of SiO2.
(1)Roe, R. J. and Zin, W. C. Macromolecules 1984, 17, 189.
(2)Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I, W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796.
(3)Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
(4)(a) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998; (b) Development in Block Copolymer Science and Technology; Hamley, I. W., Ed.; Wiley: New York, 2004.
(5)Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
(6)Hajduck, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
(7)Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764.
(8)Huang, Y,-Y.; Hsu, J.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2007, 40, 406.
(9)Huang, Y.-Y.; Hsu, J.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2007, 40, 3700.
(10)Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L. , Jr.; Fetters, L. J. Macromolecules 1986, 19, 2197.
(11)Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
(12)Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
(13)Wang, Z. G.; Safran, S. A. Europhys. Lett. 1990, 11, 425.
(14)Olmsted, P. D.; Milner, S. T. Phys. Rev. Lett. 1994, 72, 936.
(15)Likhtman, A. E.; Semenov, A. N. Macromolecules 1994, 27, 3103.
(16)Olmsted, P. D.; Milner, S. T. Phys. Rev. Lett. 1995, 74, 829.
(17)Benedicto, A. D.; O’Brien, D. Macromolecules 1997, 30, 3395.
(18)Schoen, A. H. NASA Tech. Note 1970, D-5541, 1-98.
(19)Nitsche, J. C. C. Lectures on Minimal Surfaces; Cambridge University Press: Cambridge, England, 1989; Vol. 1.
(20)Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
(21)Reiter, G.; Castelein, G.; Sommer, J.-U. In Polymer Crystallization: Observations, Concepts and Interpretations; Sommer, J.-U., Reiter, G., Eds.; Springer: Berlin, 2003; Chapter 8.
(22)Loo, Y.-L.; Register, R. A. Developments in Block Copolymer Science and Technology; Hamley, I. W., Ed.; Wiley: New York, 2004; Chapter 6.
(23)Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I. Macromolecules 2004, 37, 3689.
(24)Müller, A. J.; Balsamo, V.; Arnal, M. L. Adv. Polym. Sci. 2005, 190, 1.
(25)Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
(26)Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
(27)Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30, 8338.
(28)Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
(29)Huang, P.; Zhu, L.; Cheng, S. Z. D.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Liu, L.; Yeh, F. Macromolecules 2001, 34, 6649.
(30)Hsiao, M.-S.; Zheng, J. X.; Leng, S. W.; Van Horn, R. M.; Quirk, R. P.; Thomas, E. L.; Chen, H.-L.; Hsiao, B. S.; Rong, L.; Lotz, B.; Cheng, S. Z. D. Macromolecules 2008, 41, 8114.
(31)Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
(32)Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yen, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.
(33)Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yen, F.; Lotz, B. Polymer 2001, 42, 5829.
(34)Sun, L.; Zhu, L.; Rong, L.; Hsiao, B. S. Angew. Chem. Int. Ed. 2006, 45, 7373.
(35)Huang, Y. Y.; Nandan, B.; Chen, H. L.; Liao, C. S.; Jeng, U. S. Macromolecules 2004, 37, 8175.
(36)Mao, H.; Arrechea, P. L.; Bailey, T. S.; Johnson, B. J. S.; Hillmyer, M. A. Faraday Discuss. 2005, 128, 149.
(37)Mao, H.; Hillmyer, M. A. Soft Matter 2006, 2, 57.
(38)Mao, H.; Hillmyer, M. A. Macromol. Chem. Phys. 2008, 209, 1647.
(39)Bawden, M. J.; Turner, S. R. in: Electronic and Photomic Applications of Polymers, in: Advances in Chemistry Series, vol. 218, ACS, Washington, DC, 1988.
(40)Ratner, B. J. Biomed. Mater. Res. 1993, 27, 837.
(41)Rajh, T.; Tiede, D. M.; Thurnauer, M. C. J. Non-Cryst. Solids 1996, 207, 815.
(42)Chen, L. X.; Rajh, T.; Wang, Z.; Thurnauer, M. C.; J. Phys. Chem. 1998, 101, 10688.
(43)Ringward, S. C.; Pemberton, J. E. Environ. Sci. Technol. 2000, 34, 259.
(44)Corbierre, M. K.; Cameron, N. S.; Sutton, M.; Laaziri, K.; Lennox, R. B. Langmuir 2005, 21, 6063.
(45)Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van Horn, B.; Guan, Z. B.; Chen, G. H.; Krishnan, R. S. Science 2006, 311, 1740.
(46)Pryamitsyn, V.; Ganesan, V. Macromolecules 2006, 39, 844.
(47)Kashiwagi, T.; Fagan, J.; Douglas, J. F.; Yamamoto, K.; Heckert, A. N.; Leigh, S. D.; Obrzut, J.; Du, F. M.; Lin-Gibson, S.; Mu, M. F.; Winey, K. I.; Haggenmueller, R. Polymer 2007, 48, 4855.
(48)Lan, Q.; Francis, L. F.; Bates, F. S. J. Polym. Sci., Polym. Phys. 2007, 45, 2284.
(49)Krishnamoorti, R. MRS Bull. 2007, 32, 341.
(50)Winey, K. I.; Kashiwagi, T.; Mu, M. F. MRS Bull. 2007, 32, 348.
(51)Harton, S. E.; Kumar, S. K. J. Polym. Sci., Polym. Phys. 2008, 46, 351.
(52)Gusev, A. A. J. Mech. Phys. Solids 1997, 45, 1449.
(53)Gusev, A. A.; Lusti, H. R. Adv. Mater. 2001, 13, 1641.
(54)Hine, P. J.; Lusti, H. R.; Gusev, A. A. Compos. Sci. Technol. 2002, 62, 1445.
(55)Lusti, H. R.; Hine, P. J.; Gusev, A. A. Compos. Sci. Technol. 2002, 62, 1927.
(56)Lusti, H. R.; Gusev, A. A.; Guseva, O. Model Simul. Mater. Sci. 2004, 12, 1201.
(57)Surve, M.; Pryamitsyn, V.; Ganesan, V. J. Chem. Phys. 2006, 125 (6).
(58)Sen, S.; Thomin, J. D.; Kumar, S. K.; Keblinski, P. Macromolecules 2007, 40, 4732.