簡易檢索 / 詳目顯示

研究生: 朱哲毅
Chu, Che-Yi
論文名稱: 結晶性嵌段共聚物摻合物與奈米複合材料之自組織行為研究
Self-Organization Behavior of Crystalline Block Copolymer Blends and Nanocomposites
指導教授: 陳信龍
Chen, Hsin-Lung
口試委員: 陳信龍
蘇安仲
石天威
蔡敬誠
吳仁傑
鄭有舜
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 中文
論文頁數: 145
中文關鍵詞: 結晶嵌段共聚物摻合物高度缺陷晶體ordered bicontinuous double diamond (OBDD)gyroidorder-order transition具立體規則性結構的嵌段共聚物奈米粒子奈米複合材料分散形態
外文關鍵詞: crystallization, block copolymer blends, highly defective crystals, ordered bicontinuous double diamond (OBDD), gyroid, order-order transition, stereoregular block copolymer, nanoparticles, nanocomposites, dispersion state
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Diblock copolymers are known to be able to self-assemble into a variety of long-range ordered nanostructures due to the segregation between the repulsive block chains. Depending on the crystallizability of the constituting blocks, diblock copolymers can be classified into amorphous-amorphous, crystalline-amorphous, and crystalline-crystalline diblocks. This thesis is concentrated on studying the unique self-assembly and crystallization behavior of the former two diblock systems.

    For amorphous-amorphous diblock coplymers, here we report the existence of a stable ordered bicontinuous double diamond (OBDD) structure in a diblock copolymer composing of a stereoregular block. A slightly asymmetric syndiotactic polypropylene-block-polystyrene (sPP-b-PS) as cast from xylene was found to display OBDD morphology. When the OBDD-forming copolymer was heated, this structure transformed to a gyroid phase at ca. 155 oC. Interestingly, OBDD was recovered upon cooling, indicating that it was a thermodynamically stable structure for sPP-b-PS, which was in contradiction to the conventional view (i.e. OBDD has always been considered as an unstable structure relative to gyroid for block copolymers). We propose that the larger free energy cost encountered in OBDD due to the larger packing frustration may be compensated sufficiently by the release of free energy due to locally ordered packing of the conformationally ordered segments of sPP blocks and thereby stabilized the OBDD structure at the lower temperatures.

    The crystallization behavior of the binary blends of two crystalline-amorphous diblock copolymers bearing chemically identical amorphous block was systematically explored in this thesis. Two sub-systems were studied, namely, (1) blend of polystyrene-block-poly(ethylene oxide) (PS-b-PEO) and polystyrene-block-poly(L-lactide) (PS-b-PLLA) and (2) blend of isotactic polypropylene-block-polystyrene (iPP-b-PS) and syndiotactic polypropylene-block-polystyrene blends (sPP-b-PS). PEO and PLLA blocks are chemically different, while, iPP and sPP blocks have the same chemical composition but differet stereochemistry. In the melt stat, PEO and PLLA blocks (and iPP and sPP blocks) formed the lamellar microdomains by the cosurfactant effect. It was found that the constraint imposed by the junction points localized at the lamellar interface and the nanoscale confinement effect significantly perturbed the crystallization behavior comparing to their corresponding homopolymer blends. The highly defective PLLA and sPP crystalline domains were formed in which the crystalline stems were intervened by the PEO and iPP chains, respectively. Furthermore, the originally immiscible iPP and sPP homopolymers in the melt were found to become a miscible binary pair in the corresponding diblock copolymers with PS. This may be attributed to that the entropic gain from the moving of the junction points at the interface and the mixing of iPP and sPP blocks in the microdomains may effectively compensate the slightly positive enthalpy of mixing arising from the repulsion between iPP and sPP.

    Finally, we showed that the polymerization rate strongly affected the nanoparticle dispersion in the SiO2/PMMA nanocomposite derived by mixing the surface-modified SiO2 nanoparticles with MMA monomer. At slower polymerization, smaller clusters of nanoparticles were formed in which the SiO2 nanoparticles were more densely packed. Contrarily, the particles formed larger clusters in which the interparticle distance became larger at faster polymerization rate. The entropic effect arising from the growing PMMA chains might play an important role governing the final dispersion state of SiO2.


    Abstract I Aknowledgement III Table of Contents V List of Figures VII Chapter 1. Introduction 1.1 Background of Research 1 1.2 Overview of the Thesis 4 1.3 References and Notes 6 Chapter 2. Crystallization in the Binary Blends of Crystalline-Amorphous Diblock Copolymers Bearing Chemically Different Crystalline Block 2.1 System I: PS-b-PEO/PS-b-PLLA Blends 10 2.1.1 Introduction 10 2.1.2 Experimental Section 13 2.1.3 Results and Discussion 15 2.1.4 Conclusions 24 2.1.5 References and Notes 25 2.2 System II: iPP-b-aPS/sPP-b-aPS Blends 39 2.2.1 Introduction 39 2.2.2 Experimental Section 41 2.2.3 Results and Discussion 43 2.2.4 Conclusions 55 2.2.5 References and Notes 57 Chapter 3. Order-Order Transition Between Bicontinuous Nanostructures of Stereoregular Block Copolymer 3.1 Introduction 73 3.2 Experimental Section 75 3.3 Results and Discussion 76 3.4 Conclusions 83 3.5 References and Notes 84 Chapter 4. Dispersion State of Silica Nanoparticles in Silica/PMMA Nanocomposites 4.1 Introduction 105 4.2 Experimental Section 107 4.3 Results and Discussion 108 4.4 Conclusions 112 4.5 References and Notes 114 Chapter 5. Suggestion for Future Works 124 List of Publications 126

    (1)Roe, R. J. and Zin, W. C. Macromolecules 1984, 17, 189.
    (2)Khandpur, A. K.; Foerster, S.; Bates, F. S.; Hamley, I, W.; Ryan, A. J.; Bras, W.; Almdal, K.; Mortensen, K. Macromolecules 1995, 28, 8796.
    (3)Bates, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    (4)(a) Hamley, I. W. The Physics of Block Copolymers; Oxford University Press: New York, 1998; (b) Development in Block Copolymer Science and Technology; Hamley, I. W., Ed.; Wiley: New York, 2004.
    (5)Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 1091.
    (6)Hajduck, D. A.; Harper, P. E.; Gruner, S. M.; Honeker, C. C.; Kim, G.; Thomas, E. L.; Fetters, L. J. Macromolecules 1994, 27, 4063.
    (7)Huang, Y.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2003, 36, 764.
    (8)Huang, Y,-Y.; Hsu, J.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2007, 40, 406.
    (9)Huang, Y.-Y.; Hsu, J.-Y.; Chen, H.-L.; Hashimoto, T. Macromolecules 2007, 40, 3700.
    (10)Thomas, E. L.; Alward, D. B.; Kinning, D. J.; Martin, D. C.; Handlin, D. L. , Jr.; Fetters, L. J. Macromolecules 1986, 19, 2197.
    (11)Hasegawa, H.; Tanaka, H.; Yamasaki, K.; Hashimoto, T. Macromolecules 1987, 20, 1651.
    (12)Anderson, D. M.; Thomas, E. L. Macromolecules 1988, 21, 3221.
    (13)Wang, Z. G.; Safran, S. A. Europhys. Lett. 1990, 11, 425.
    (14)Olmsted, P. D.; Milner, S. T. Phys. Rev. Lett. 1994, 72, 936.
    (15)Likhtman, A. E.; Semenov, A. N. Macromolecules 1994, 27, 3103.
    (16)Olmsted, P. D.; Milner, S. T. Phys. Rev. Lett. 1995, 74, 829.
    (17)Benedicto, A. D.; O’Brien, D. Macromolecules 1997, 30, 3395.
    (18)Schoen, A. H. NASA Tech. Note 1970, D-5541, 1-98.
    (19)Nitsche, J. C. C. Lectures on Minimal Surfaces; Cambridge University Press: Cambridge, England, 1989; Vol. 1.
    (20)Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yeh, F.; Lotz, B. J. Am. Chem. Soc. 2000, 122, 5957.
    (21)Reiter, G.; Castelein, G.; Sommer, J.-U. In Polymer Crystallization: Observations, Concepts and Interpretations; Sommer, J.-U., Reiter, G., Eds.; Springer: Berlin, 2003; Chapter 8.
    (22)Loo, Y.-L.; Register, R. A. Developments in Block Copolymer Science and Technology; Hamley, I. W., Ed.; Wiley: New York, 2004; Chapter 6.
    (23)Huang, P.; Zhu, L.; Guo, Y.; Ge, Q.; Jing, A. J.; Chen, W. Y.; Quirk, R. P.; Cheng, S. Z. D.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Avila-Orta, C. A.; Sics, I. Macromolecules 2004, 37, 3689.
    (24)Müller, A. J.; Balsamo, V.; Arnal, M. L. Adv. Polym. Sci. 2005, 190, 1.
    (25)Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
    (26)Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
    (27)Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30, 8338.
    (28)Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
    (29)Huang, P.; Zhu, L.; Cheng, S. Z. D.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Lotz, B.; Hsiao, B. S.; Liu, L.; Yeh, F. Macromolecules 2001, 34, 6649.
    (30)Hsiao, M.-S.; Zheng, J. X.; Leng, S. W.; Van Horn, R. M.; Quirk, R. P.; Thomas, E. L.; Chen, H.-L.; Hsiao, B. S.; Rong, L.; Lotz, B.; Cheng, S. Z. D. Macromolecules 2008, 41, 8114.
    (31)Nojima, S.; Tanaka, H.; Rohadi, A.; Sasaki, S. Polymer 1998, 39, 1727.
    (32)Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B. H.; Chun, M.; Quirk, R. P.; Cheng, S. Z. D.; Hsiao, B. S.; Yen, F.; Hashimoto, T. Phys. Rev. B 1999, 60, 10022.
    (33)Zhu, L.; Cheng, S. Z. D.; Calhoun, B. H.; Ge, Q.; Quirk, R. P.; Thomas, E. L.; Hsiao, B. S.; Yen, F.; Lotz, B. Polymer 2001, 42, 5829.
    (34)Sun, L.; Zhu, L.; Rong, L.; Hsiao, B. S. Angew. Chem. Int. Ed. 2006, 45, 7373.
    (35)Huang, Y. Y.; Nandan, B.; Chen, H. L.; Liao, C. S.; Jeng, U. S. Macromolecules 2004, 37, 8175.
    (36)Mao, H.; Arrechea, P. L.; Bailey, T. S.; Johnson, B. J. S.; Hillmyer, M. A. Faraday Discuss. 2005, 128, 149.
    (37)Mao, H.; Hillmyer, M. A. Soft Matter 2006, 2, 57.
    (38)Mao, H.; Hillmyer, M. A. Macromol. Chem. Phys. 2008, 209, 1647.
    (39)Bawden, M. J.; Turner, S. R. in: Electronic and Photomic Applications of Polymers, in: Advances in Chemistry Series, vol. 218, ACS, Washington, DC, 1988.
    (40)Ratner, B. J. Biomed. Mater. Res. 1993, 27, 837.
    (41)Rajh, T.; Tiede, D. M.; Thurnauer, M. C. J. Non-Cryst. Solids 1996, 207, 815.
    (42)Chen, L. X.; Rajh, T.; Wang, Z.; Thurnauer, M. C.; J. Phys. Chem. 1998, 101, 10688.
    (43)Ringward, S. C.; Pemberton, J. E. Environ. Sci. Technol. 2000, 34, 259.
    (44)Corbierre, M. K.; Cameron, N. S.; Sutton, M.; Laaziri, K.; Lennox, R. B. Langmuir 2005, 21, 6063.
    (45)Mackay, M. E.; Tuteja, A.; Duxbury, P. M.; Hawker, C. J.; Van Horn, B.; Guan, Z. B.; Chen, G. H.; Krishnan, R. S. Science 2006, 311, 1740.
    (46)Pryamitsyn, V.; Ganesan, V. Macromolecules 2006, 39, 844.
    (47)Kashiwagi, T.; Fagan, J.; Douglas, J. F.; Yamamoto, K.; Heckert, A. N.; Leigh, S. D.; Obrzut, J.; Du, F. M.; Lin-Gibson, S.; Mu, M. F.; Winey, K. I.; Haggenmueller, R. Polymer 2007, 48, 4855.
    (48)Lan, Q.; Francis, L. F.; Bates, F. S. J. Polym. Sci., Polym. Phys. 2007, 45, 2284.
    (49)Krishnamoorti, R. MRS Bull. 2007, 32, 341.
    (50)Winey, K. I.; Kashiwagi, T.; Mu, M. F. MRS Bull. 2007, 32, 348.
    (51)Harton, S. E.; Kumar, S. K. J. Polym. Sci., Polym. Phys. 2008, 46, 351.
    (52)Gusev, A. A. J. Mech. Phys. Solids 1997, 45, 1449.
    (53)Gusev, A. A.; Lusti, H. R. Adv. Mater. 2001, 13, 1641.
    (54)Hine, P. J.; Lusti, H. R.; Gusev, A. A. Compos. Sci. Technol. 2002, 62, 1445.
    (55)Lusti, H. R.; Hine, P. J.; Gusev, A. A. Compos. Sci. Technol. 2002, 62, 1927.
    (56)Lusti, H. R.; Gusev, A. A.; Guseva, O. Model Simul. Mater. Sci. 2004, 12, 1201.
    (57)Surve, M.; Pryamitsyn, V.; Ganesan, V. J. Chem. Phys. 2006, 125 (6).
    (58)Sen, S.; Thomin, J. D.; Kumar, S. K.; Keblinski, P. Macromolecules 2007, 40, 4732.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE