研究生: |
葉人傑 Jen-Chieh Yeh |
---|---|
論文名稱: |
快閃記憶體錯誤診斷與測試時間縮減 Flash Memory Fault Diagnostics and Test Time Reduction |
指導教授: |
吳誠文
Cheng-Wen Wu |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2006 |
畢業學年度: | 95 |
語文別: | 英文 |
論文頁數: | 78 |
中文關鍵詞: | 快閃記憶體 、測試 、錯誤診斷 、內建自我診斷 、半導體記憶體 、測試時間縮減 |
外文關鍵詞: | Flash Memory, Testing, Fault Diagnosis, Built-In Self-Diagnosis, Semiconductor Memory, Test Time Reduction |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
隨著快閃記憶體單位密度與記憶容量的快速成長,再加上快閃記憶體冗長地測試時間,使得快閃記憶體測試機台(ATE)更加複雜化。然而,針對測試機台上費時的錯誤診斷流程,更嚴重增加了測試成本與延宕了量產時間,因此有效率的快閃記憶體診斷方法已經是目前刻不容緩的議題。根據我們之前研究開發出系統化之快閃記憶體干擾故障模型與高效率位元與字元之測試演算法(March-like Test Algorithms),在這次的研究論文中,我們提出了低成本、高效能之快閃記憶體錯誤診斷法。此快閃記憶體錯誤診斷法有效地區分出失敗位元圖(fail bit-maps)中錯誤位元之錯誤行為,利用錯誤特徵(fault signature)與錯誤字典(fault dictionary)來進行有效地區分程序,接著利用診斷結果來描繪出錯誤行為位元圖(fault bit-maps),提供更進階的錯誤診斷資訊以方便、快速地改善良率與產品可靠性。我們也提出了一個內建自我診斷電路(Built-In Self Diagnosis; BISD),用來收集有用的測試資料並供給外部之錯誤診斷系統進行分析,此內建自我診斷電路更採用了獨特的工程測試模式控制功能,用以縮短測試所需花費的時間,也提供平行輸出測試資料來降低資料輸出時間。同時,此內建自我診斷電路更能提供內部平行測試的能力,大幅縮短了測試時所需花費的時間與成本。最後,我們實現了一套低成本可配置之診斷系統,並實際使用工業界快閃記憶體產品來驗證我們提出之低成本可配置之診斷系統,此系統有效的利用我們所提出之測試演算法(March-like Test Algorithm)來進行測試與診斷。
另一方面,我們也針對半導體記憶元件開發出一套分析與精簡測試流程,以達縮減量產測試時間之效果。我們提出了三個測試時間縮減的技術,並實現一套測試時間縮減工具來辨識重複之測試項目、提供測試項目之關聯性與建議適當之測試流程。實驗結果顯示,此測試時間縮減工具有效的降低工業界量產記憶體測試時間,並證實我們所開發之測試時間縮減工具更優於原先經由傳統統計方式縮減之成效。
With the increase in size and capacity of flash memory, long test times on complicated automatic test equipment (ATE) are now commonly seen. The test-consuming diagnosis process for ATEs results in high test cost and slow time-to-volume; thus, efficient diagnosis of flash memory has recently become a critical issue. Based on our previous work, which developed a set of disturb fault models using a systematic approach and improved March-like algorithms for both bit-oriented and word-oriented flash memory, in this work we propose cost-effective diagnostics for flash memory. The diagnosis methodology efficiently distinguishes the fault types of faulty cell from the fail bit-maps by comparing the fault signature with the fault dictionary and the fault bit-maps provide detailed diagnosis information for yield and reliability improvement. We also propose a built-in self-diagnosis (BISD) scheme that collects useful test information for off-chip diagnosis analysis and contains a unique test mode control that reduces test time and diagnostic data shift-out cycles by using a parallel shift-out mechanism. Additionally, test time is also greatly reduced by accessing the engineering test mode to do parallel programming and parallel erasing. Finally, we
show a configurable diagnostics system for low-cost test and diagnosis environment. Experiments were done using industrial flash products to justify the effectiveness of our low-cost configurable diagnostics system and the efficiency using March-like test algorithm in the test flow.
Furthermore, a systematic approach to minimize themass production test time by analyzing and rearranging the test items in the test flow is also presented in this work. We propose three test time reduction (TTR) techniques and implement an automatic TTR tool based on these techniques to identify redundant test items, suggest proper tests, and provide correlation between the test items. Experimental results show the TTR tool effectively reduces the test time of industrial memory mass production test flow; the results are on top of the original test flow that has been compacted
by conventional way based on statistics.
[1] Semiconductor Industry Association, "International technology roadmap for semiconductors (ITRS), 2005 edition", Dec. 2005.
[2] T. Trexler, "Flash memory complexity", IEEE Instrumentation and Measurement Magazine, vol. 8, no. 1, pp. 22-26, Mar. 2005.
[3] G. Lawton, "Improved flash memory grows in popularity", IEEE Computer, vol. 39, pp. 16-18, Jan. 2006.
[4] L. Larcher, P. Pavan, and A. Maurelli, "Flash memories for SOC: An overview on system constraints and technology issues", in Proc. IEEE Int'l Workshop on System-on-Chip for Real-Time Applications, (Alberta, Canada), pp. 73-77, July 2005.
[5] A. J. van de Goor, Testing Semiconductor Memories: Theory and Practice. Gouda, The Netherlands: ComTex Publishing, 1998.
[6] L.-T. Wang, C.-W. Wu, and X. Wen, Design for Testability: VLSI Test Principles and Architectures. San Francisco: Elsevier (Morgan Kaufmann), 2006.
[7] J. Agin, H. Boyce, and T. Trexler, "Overcoming test challenges presented by embedded flash memory", in Proc. Int'l Electronics Manufacturing Technology Symp. (IEMT), pp. 197-200, July 2003.
[8] P. Olivo and M. Dalpasso, "Self-learning signature analysis for non-volatile memory testing", in Proc. Int'l Test Conf. (ITC), (Washington, DC), pp. 303-308, Oct. 1996.
[9] W.-J. Wu, C.-Y. Tang, and M.-Y. Lin, "Methods for memory test time reduction", in Proc. IEEE Int'l Workshop on Memory Technology, Design and Testing (MTDT), pp. 64-70, Aug. 1996.
[10] M. G. Mohammad, K. K. Saluja, and A. Yap, "Testing flash memories", in Proc. 13th Int'l Conf. on VLSI Design, pp. 406-411, Jan. 2000.
[11] M. G. Mohammad and K. K. Saluja, "Flash memory disturbances: Modeling and test", in Proc. IEEE VLSI Test Symp. (VTS), (Marina Del Rey, California), pp. 218 -224, Apr. 2001.
[12] M. G. Mohammad, K. K. Saluja, and A. Yap, "Fault models and test procedures for flash memory disturbances", Jour. of Electronic Testing: Theory and Applications, vol. 17, pp. 495-508, 2001.
[13] W.-J. Wu and C.-Y. Tang, "Memory test time reduction by interconnecting test items", in IEEE Asian Test Symp. (ATS), pp. 290-298, Dec. 2000.
[14] V. Mastrocola, G. Palumbo, P. Kumar, F. Pipitone, and G. Introvaia, "Built-in self test for low cost testing of a 60MHz synchronous flash memory", in Proc. IEEE Int'l On-Line Testing Workshop, (Taormina, Italy), pp. 192-196, July 2001.
[15] J. Hirase, "Test time reduction through minimum execution of tester-hardware setting instructions", in Proc. Tenth IEEE Asian Test Symp. (ATS), (Kyoto), pp. 173-178, Nov. 2001.
[16] J.-C. Yeh, C.-F. Wu, K.-L. Cheng, Y.-F. Chou, C.-T. Huang, and C.-W. Wu, "Flash memory built-in self-test using march-like algorithms", in Proc. IEEE Int'l Workshop on Electronic Design, Test, and Applications (DELTA), (Christchurch), pp. 137-141, Jan. 2002.
[17] K.-L. Cheng, J.-C. Yeh, C.-W. Wang, C.-T. Huang, and C.-W. Wu, "RAMSES-FT: A fault simulator for flash memory testing and diagnostics", in Proc. IEEE VLSI Test Symp. (VTS), (Monterey, California), pp. 281-286, Apr. 2002.
[18] P. Bernardii, M. Rebaudengo, M. S. Reorda, and M. Violante, "A P1500-compatible programmable BIST approach for the test of embedded flash memories", in Proc. Conf. Design, Automation, and Test in Europe (DATE), (Munich), pp. 720-725, Mar. 2003.
[19] M. G. Mohammad and K. K. Saluja, "Electrical model for program disturb faults in nonvolatile memories", in Proc. 16th Int'l Conf. on VLSI Design, (New Delhi, India), pp. 217-222, Jan. 2003.
[20] M. G. Mohammad and K. K. Saluja, "Simulating program disturb faults in flash memories using SPICE compatible electrical model", IEEE Trans. on Electron Devices, vol. 50, no. 11, pp. 2286-2291, Nov. 2003.
[21] B. Wang, J. Yang, and A. Ivanov, "Reducing test time of embedded SRAMs", in Proc. IEEE Int'l Workshop on Memory Technology, Design and Testing (MTDT), (San Jose), pp. 47-52, July 2003.
[22] J. M. Portal, B. Saillet, and D. N'ee, "Flash memory cell diagnosis: High-level model", in Proc. Fifth Non-Volatile Memory Technology Symp. (NVMTS), (Orlando), pp. 33-42, Nov. 2004.
[23] C.-T. Huang, J.-C. Yeh, Y.-Y. Shih, R.-F. Huang, and C.-W. Wu, "On test and diagnostics of flash memories", in Proc. 13th IEEE Asian Test Symp. (ATS), (Kenting, Taiwan), pp. 260-265, Nov. 2004.
[24] B. Wang, J. Yang, J. Cicalo, A. Ivanov, and Y. Zorian, "Reducing embedded SRAM test time under redundancy constraints", in Proc. IEEE VLSI Test Symp. (VTS), (Napa Valley), pp. 237-242, Apr. 2004.
[25] J. M. Portal, H. Aziza, and D. N'ee, "EEPROM diagnosis based on threshold voltage embedded measurement", Jour. of Electronic Testing: Theory and Applications, vol. 21, no. 1, pp. 33-42, Feb. 2005.
[26] J.-C. Yeh, Y.-T. Lai, Y.-Y. Shih, and C.-W. Wu, "Flash memory built-in self-diagnosis with test mode control", in Proc. IEEE VLSI Test Symp. (VTS), (Palm Springs), pp. 15-20, May 2005.
[27] J.-C. Yeh, S.-F. Kuo, C.-W. Wu, C.-T. Huang, and C.-H. Chen, "A systematic approach to reducing semiconductor memory test time in mass production", in Proc. IEEE Int'l Workshop on Memory Technology, Design and Testing (MTDT), (Taipei), pp. 97-102, Aug. 2005.
[28] M.-H. Hsu, Y.-T. Hsing, J.-C. Yeh, and C.-W. Wu, "Fault-pattern oriented defect diagnosis for flash memory", in Proc. IEEE Int'l Workshop on Memory Technology, Design and Testing (MTDT), (Taipei), pp. 3-8, Aug. 2006.
[29] J.-C. Yeh, "Flash Memory Fault Modeling and Test Algorithm Development",Master Thesis, Dept. Electrical Engineering, National Tsing Hua University, Hsinchu, Taiwan, July 2004.
[30] Y.-C. Dawn, J.-C. Yeh, C.-W. Wu, C.-C. Wang, Y.-C. Lin, and C.-H. Chen, "Flash memory die sort by a sample classification method", in Proc. 14th IEEE Asian Test Symp. (ATS), (Kolkatta, India), pp. 182-187, Dec. 2005.
[31] M. G. Mohammad and K. K. Saluja, "Stress test for disturb faults in non-volatile memories", in IEEE Asian Test Symp. (ATS), (Xian), pp. 384-387, Nov. 2003.
[32] C.-F. Wu, C.-T. Huang, C.-W. Wang, K.-L. Cheng, and C.-W. Wu, "Error catch and analysis for semiconductor memories using March tests", in Proc. IEEE/ACM Int'l Conf. on Computer-Aided Design (ICCAD), (San Jose), pp. 468-471, Nov. 2000.
[33] J.-H. Park, S.-H. Hur, J.-H. Lee, J.-T. Park, J.-S. Sel, J.-W. Kim, S.-B. Song, J.-Y. Lee, J.-H. Lee, S.-J. Son, Y.-S. Kim, M.-C. Park, S.-J. Chai, J.-D. Choi, U.-I. Chung, J.-T. Moon, K.-T. Kim, K. Kim, and B.-I. Ryu, "8Gb MLC (multi-level cell) NAND flash memory using 63nm process technology", in Proc. IEEE Int'l Electron Devices Meeting, pp. 873-876, 2004.
[34] M. Bauer, R. Alexis, G. Atwood, B. Baltar, A. Fazio, K. Frary, M. Hensel,M. Ishac, J. Javanifard, M. Landgraf, D. Leak, K. Loe, D. Mills, P. Ruby, R. Rozman, S. Sweha, S. Talreja, and K. Wojciechowski, "A multilevel-cell 32Mb flash memory", in Proc. IEEE Int'l Solid-State Cir. Conf. (ISSCC), pp. 132-133, 1995.
[35] P. Cappelletti, C. Golla, P. Olivo, and E. Zanoni, Flash Memories. Boston: Kluwer Academic Publishers, 1999.
[36] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, "Fault simulation and test algorithm generation for random access memories", IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 21, no. 4, pp. 480-490, Apr. 2002.
[37] IEEE, IEEE 1005 Standard Definitions and Characterization of FloatingGate Semiconductor Arrays. Piscataway: IEEE Standards Department, 1999.
[38] A. Chimenton, P. Pellati, and P. Olivo, "Overerase phenomena: An insight into flash memory reliability", Proc. of the IEEE, vol. 91, no. 4, pp. 617-626, Apr. 2003.
[39] M. G. Mohammad and L. Terkawi, "Fault collapsing for flash memory disturb faults", in Proc. IEEE European Test Symp. (ETS), (Tallinn), pp. 142-147, May 2005.
[40] A. K. Sharma, Semiconductor Memories: Technology, Testing, and Reliability. Piscataway: IEEE Press, 1997.
[41] A. J. van de Goor, S. Hamdioui, and R.Wadsworth, "Detecting faults in the peripheral circuits and an evaluation of SRAM tests", in Proc. Int'l Test Conf. (ITC), (Charlotte), pp. 114-123, Oct. 2004.
[42] A. J. van de Goor and I. Schanstra, "Address and data scrambling: causes and impact on mwmory tests", in Proc. IEEE Int'l Workshop on Electronic Design, Test, and Applications (DELTA), (Christchurch), pp. 128-136, Jan. 2002.
[43] L. Li, K. Chakrabarty, S. Kajihara, and S. Swaminathan, "Three-stage compression approach to reduce test data volume and testing time for IP cores in SOCs", IEE Proc.-Computers and Digital Techniques, vol. 152, no. 6, pp. 704-712, Nov. 2005.
[44] H. Sungbae and J. A. Abraham, "Test data compression and test time reduction using an embedded microprocessor", IEEE Trans. on VLSI Systems, vol. 11, no. 5, pp. 853-862, Oct. 2003.
[45] A. Chandra and K. Chakrabarty, "System-on-a-chip test-data compression and decompression architectures based on Golomb codes", IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 20, no. 3, pp. 355-368, Mar. 2001.
[46] J.-F. Li, R.-S. Tzeng, and C.-W. Wu, "Diagnostic data compression techniques for embedded memories with built-in self-test", Jour. of Electronic Testing: Theory and Applications, vol. 18, no. 4-5, pp. 515-527, Aug.-Oct. 2002.
[47] C.-L. Su, R.-F. Huang, C.-W. Wu, Y.-J. Chang, and S.-T. Lin, "Embedded memory diagnostic data compression using differential address", in Proc. Int'l Symp. on VLSI Technology, Systems, and Applications: Design, Automation and Test (VLSI-TSA-DAT), (Hsinchu), pp. 20-23, Apr. 2005.
[48] H.-F. Chou, C.-S. Yang, C.-J. Liu, H.-H. Pong, M.-C. Liaw, T.-S. Chao, Y.-C. King, H.- L. Hwang, and C.-H. Hsu, "Comprehensive study on a novel bidirectional tunneling program/erase NOR-type (BiNOR) 3-D flash memory cell", IEEE Trans. on Electron Devices, vol. 48, pp. 1386-1393, July 2001.
[49] R. Dekker, F. Beenker, and L. Thijssen, "A realistic fault model and test algorithm for static random access memories", IEEE Trans. on Computer-Aided Design of Integrated Circuits and Systems, vol. 9, no. 6, pp. 567-572, June 1990.
[50] C.-F. Wu, C.-T. Huang, K.-L. Cheng, and C.-W. Wu, "Simulation-based test algorithm generation for random access memories", in Proc. IEEE VLSI Test Symp. (VTS), (Montreal), pp. 291-296, Apr. 2000.