簡易檢索 / 詳目顯示

研究生: 洪至平
Hung, Chih-Ping
論文名稱: 新穎探針用於監測多巴胺動態
Novel Molecular Probes Monitor Dopamine Dynamics
指導教授: 桑自剛
Sang, Tzu-Kang
口試委員: 張兗君
Yen-Chung Chang
陳盛良
Shen Liang Chen
桑自剛
Tzu-Kang Sang
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 生物科技研究所
Biotechnology
論文出版年: 2014
畢業學年度: 102
語文別: 英文
論文頁數: 47
中文關鍵詞: 多巴胺分子探針單胺氧化酶B遮蔽效應
外文關鍵詞: Molecular probe, Monoamine oxidase B, MAO-B, Shield effect
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 多巴胺(DA)在大腦中作為重要的神經傳導物質,在動物的生理以及心理層面上扮演著舉足輕重的角色,而多巴胺系統的失衡現象也在多數神經疾病中被發現,包含了帕金森氏症(PD)。偵測腦中多巴胺神經細胞(Dopaminergic neuron)內的多巴胺濃度變化有助於釐清帕金森氏症的發病機制,因此有必要建立可在細胞規格下偵測多巴胺濃度變化的分子探針。多巴胺神經細胞中的單胺氧化酶(MAO)與黃素腺嘌呤二核苷酸(FAD)作輔因子代謝細胞中的多巴胺,藉以維持多巴胺濃度的恆定。其一的單胺氧化酶B(MAO-B)已被發現含有獨特的吸收光譜,我們利用此特性與綠色螢光蛋白結合,設計多巴胺探針。當單胺氧化酶B在氧化態時,吸收了400-500 nm波長的光波段,使綠色螢光蛋白無法被激發,我們稱為「屏蔽效應」。而當氧化多巴胺形成還原態時,屏蔽效應便會消失,使得綠色螢光蛋白得以被激發螢光。因此,綠色螢光蛋白訊號可以做為多巴胺濃度的讀值。我們的實驗結果顯示,增加神經細胞中的多巴胺濃度可確實激發多巴胺探針(MMG1)發出螢光,並且經過測試後,探針的酵素活性及基質結合能力不受設計過程而被破壞。未來將能應用此一多巴胺探針於患有帕金森氏症突變基因的實驗動物體中,確定多巴胺濃度變化是否參與帕金森氏症等多巴胺相關疾病的發病機制。


    Dopamine (DA) system impairment in the central nervous system links to both motor and mental dysfunction in human. However, it remains impossible to monitor the brain DA dynamic in cellular level. MAO-B (monoamine oxidase B) is an enzyme anchored on the mitochondrial outer membrane to catalyse amine oxidation, including DA; a process requires FAD as a cofactor. Because of MAO-B absorbance at 400-500 nm spectrums, MAO-B fused with a GFP chromophore cannot be elicited by 488 nm light if FAD remains in oxidized form, we called this phenomenon as “Shield effect”. Shield effect would be diminished upon the enzyme binds to the substrate, which would allow us to “visualize” the substrate binding of MAO-B in real time. Indeed, we have established such a molecular probe, MMG1, which could detect the intracellular fluctuation of DA concentration by monitoring GFP fluorescent readout. The L-DOPA (dopamine precursor)–induced fluorescence in a set of quantitative experiments using flow cytometry confirmed that MMG1 is sensitive to L-DOPA in a dose-dependent manner. To ultimately validate this DA probe, I constructed three MMG1 mutants, MMG1Y398S, MMG1Y435S, and MMG1C397A, which are defective in FAD or substrate binding. To further characterize this DA probe (MMG1), I characterized the enzyme kinetics of MMG1 and revealed the substrate binding affinity of MMG1 is comparable to native MAO-B. Together, this study provides the first in vivo tool that could monitor DA dynamics in cellular level.

    ABSTRACT..........................................i 摘要..............................................ii TABLE OF CONTENTS.................................iii LIST OF FIGURES...................................iv INTRODUCTION......................................1 MATERIALS & METHODS...............................8 Construction of plasmids..........................8 Site-direct mutagenesis (SDM).....................8 Transfection & co-transfection....................9 Cell collection & Protein extraction..............10 SDS-PAGE electrophoresis and western blotting.....10 MAO activity assay & MAO kinetics assay...........11 Generation stable cell line.......................11 Isolation and subfractionation of mitochondria....11 Flow cytometric analysis..........................12 RESULTS...........................................14 Incorporation of split GFP and mitofusin are required for DA probe.............................................14 MMG1 can elicit GFP fluorescence upon benzylamine treatment ..................................................16 The dominant negative mutants, MMG1Y398S, MMG1Y435S and MMG1C397A, abolish enzyme activity................17 MMG1 preserves comparable substrate binding affinity to native MAO-B in kinetics..........................18 MMG1C397A retains shield effect after benzylamine treatment in HEK293-DAT cells...............................19 DISCUSSION........................................20 Benzylamine can be used to substitute DA as a substrate of MAO-B for kinetic experiments.....................20 MMG1C397A can serve as a potential control for characterizing the probe efficacy.................20 The innate immune system, induced by membrane fusion ..................................................21 Future work.......................................22 FIGURES...........................................23 REFERENCES........................................44

    Berke, J. D., & Hyman, S. E. (2000). Addiction, dopamine, and the molecular mechanisms of memory. Neuron, 25(3), 515-532.
    Binda, C., Newton-Vinson, P., Hubalek, F., Edmondson, D. E., & Mattevi, A. (2002). Structure of human monoamine oxidase B, a drug target for the treatment of neurological disorders. Nat Struct Biol, 9(1), 22-26. doi: 10.1038/nsb732
    Caudle, W. M., Richardson, J. R., Wang, M. Z., Taylor, T. N., Guillot, T. S., McCormack, A. L., . . . Miller, G. W. (2007). Reduced vesicular storage of dopamine causes progressive nigrostriatal neurodegeneration. J Neurosci, 27(30), 8138-8148. doi: 10.1523/jneurosci.0319-07.2007
    Chen, L., Ding, Y., Cagniard, B., Van Laar, A. D., Mortimer, A., Chi, W., . . . Zhuang, X. (2008). Unregulated cytosolic dopamine causes neurodegeneration associated with oxidative stress in mice. J Neurosci, 28(2), 425-433. doi: 10.1523/jneurosci.3602-07.2008
    De Colibus, L., Li, M., Binda, C., Lustig, A., Edmondson, D. E., & Mattevi, A. (2005). Three-dimensional structure of human monoamine oxidase A (MAO A): relation to the structures of rat MAO A and human MAO B. Proc Natl Acad Sci U S A, 102(36), 12684-12689. doi: 10.1073/pnas.0505975102
    Edmondson, D. E., Binda, C., Wang, J., Upadhyay, A. K., & Mattevi, A. (2009). Molecular and mechanistic properties of the membrane-bound mitochondrial monoamine oxidases. Biochemistry, 48(20), 4220-4230. doi: 10.1021/bi900413g
    Edmondson, D. E., Mattevi, A., Binda, C., Li, M., & Hubalek, F. (2004). Structure and mechanism of monoamine oxidase. Curr Med Chem, 11(15), 1983-1993.
    Geha, R. M., Chen, K., Wouters, J., Ooms, F., & Shih, J. C. (2002). Analysis of conserved active site residues in monoamine oxidase A and B and their three-dimensional molecular modeling. J Biol Chem, 277(19), 17209-17216. doi: 10.1074/jbc.M110920200
    Giros, B., & Caron, M. G. (1993). Molecular characterization of the dopamine transporter. Trends Pharmacol Sci, 14(2), 43-49.
    Grimsby, J., Chen, K., Wang, L. J., Lan, N. C., & Shih, J. C. (1991). Human monoamine oxidase A and B genes exhibit identical exon-intron organization. Proc Natl Acad Sci U S A, 88(9), 3637-3641.
    Hjemdahl, P. (1984). Catecholamine measurements by high-performance liquid chromatography. Am J Physiol, 247(1 Pt 1), E13-20.
    Howes, O. D., Bose, S. K., Turkheimer, F., Valli, I., Egerton, A., Valmaggia, L. R., . . . McGuire, P. (2011). Dopamine synthesis capacity before onset of psychosis: a prospective [18F]-DOPA PET imaging study. Am J Psychiatry, 168(12), 1311-1317. doi: 10.1176/appi.ajp.2011.11010160
    Kadota, T., Yamaai, T., Saito, Y., Akita, Y., Kawashima, S., Moroi, K., . . . Kadota, K. (1996). Expression of dopamine transporter at the tips of growing neurites of PC12 cells. J Histochem Cytochem, 44(9), 989-996.
    Kolhatkar, R. B., Ghorai, S. K., George, C., Reith, M. E., & Dutta, A. K. (2003). Interaction of cis-(6-benzhydrylpiperidin-3-yl)benzylamine analogues with monoamine transporters: structure-activity relationship study of structurally constrained 3,6-disubstituted piperidine analogues of (2,2-diphenylethyl)-[1-(4-fluorobenzyl)piperidin-4-ylmethyl]amine. J Med Chem., 46(11), 2205-2215.
    Kumakura, Y., & Cumming, P. (2009). PET studies of cerebral levodopa metabolism: a review of clinical findings and modeling approaches. Neuroscientist, 15(6), 635-650. doi: 10.1177/1073858409338217
    LaVoie, M. J., & Hastings, T. G. (1999). Dopamine quinone formation and protein modification associated with the striatal neurotoxicity of methamphetamine: evidence against a role for extracellular dopamine. J Neurosci, 19(4), 1484-1491.
    Obeso, J. A., Rodriguez-Oroz, M. C., Benitez-Temino, B., Blesa, F. J., Guridi, J., Marin, C., & Rodriguez, M. (2008). Functional organization of the basal ganglia: therapeutic implications for Parkinson's disease. Mov Disord, 23 Suppl 3, S548-559. doi: 10.1002/mds.22062
    Peaston, R. T., & Weinkove, C. (2004). Measurement of catecholamines and their metabolites. Ann Clin Biochem, 41(Pt 1), 17-38. doi: 10.1258/000456304322664663
    Pothos, E., Desmond, M., & Sulzer, D. (1996). L-3,4-dihydroxyphenylalanine increases the quantal size of exocytotic dopamine release in vitro. J Neurochem, 66(2), 629-636.
    Rasmussen, S. B., Horan, K. A., Holm, C. K., Stranks, A. J., Mettenleiter, T. C., Simon, A. K., . . . Paludan, S. R. (2011). Activation of autophagy by alpha-herpesviruses in myeloid cells is mediated by cytoplasmic viral DNA through a mechanism dependent on stimulator of IFN genes. J Immunol, 187(10), 5268-5276. doi: 10.4049/jimmunol.1100949
    Rebrin, I., Geha, R. M., Chen, K., & Shih, J. C. (2001). Effects of carboxyl-terminal truncations on the activity and solubility of human monoamine oxidase B. J Biol Chem, 276(31), 29499-29506. doi: 10.1074/jbc.M100431200
    Robinson, D. L., Venton, B. J., Heien, M. L., & Wightman, R. M. (2003). Detecting subsecond dopamine release with fast-scan cyclic voltammetry in vivo. Clin Chem, 49(10), 1763-1773.
    Saitoh, T., Fujita, N., Hayashi, T., Takahara, K., Satoh, T., Lee, H., . . . Akira, S. (2009). Atg9a controls dsDNA-driven dynamic translocation of STING and the innate immune response. Proc Natl Acad Sci U S A, 106(49), 20842-20846. doi: 10.1073/pnas.0911267106
    Sang, T. K., & Jackson, G. R. (2005). Drosophila models of neurodegenerative disease. NeuroRx, 2(3), 438-446. doi: 10.1602/neurorx.2.3.438
    Shapiro, M. G., Westmeyer, G. G., Romero, P. A., Szablowski, J. O., Kuster, B., Shah, A., . . . Jasanoff, A. (2010). Directed evolution of a magnetic resonance imaging contrast agent for noninvasive imaging of dopamine. Nat Biotechnol, 28(3), 264-270. doi: 10.1038/nbt.1609
    Sulzer, D., Bogulavsky, J., Larsen, K. E., Behr, G., Karatekin, E., Kleinman, M. H., . . . Zecca, L. (2000). Neuromelanin biosynthesis is driven by excess cytosolic catecholamines not accumulated by synaptic vesicles. Proc Natl Acad Sci U S A, 97(22), 11869-11874. doi: 10.1073/pnas.97.22.11869
    Vickrey, T. L., Condron, B., & Venton, B. J. (2009). Detection of endogenous dopamine changes in Drosophila melanogaster using fast-scan cyclic voltammetry. Anal Chem, 81(22), 9306-9313. doi: 10.1021/ac901638z
    Watson, R. O., Manzanillo, P. S., & Cox, J. S. (2012). Extracellular M. tuberculosis DNA targets bacteria for autophagy by activating the host DNA-sensing pathway. Cell, 150(4), 803-815. doi: 10.1016/j.cell.2012.06.040
    Wise, R. A. (2004). Dopamine, learning and motivation. Nat Rev Neurosci, 5(6), 483-494. doi: 10.1038/nrn1406
    Zhang, H., Gubernator, N. G., Yue, M., Staal, R. G., Mosharov, E. V., Pereira, D., . . . Sames, D. (2009). Dopamine release at individual presynaptic terminals visualized with FFNs. J Vis Exp(30). doi: 10.3791/1562

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE