研究生: |
吳致緯 Chih-Wei Wu |
---|---|
論文名稱: |
結晶性/掌性PS-PLLA雙團聯共聚合物之自組裝形態探討 Hierarchical Structures in Self-assembly of Semicrystalline PS-PLLA Chiral Diblock Copolymers |
指導教授: |
何榮銘
Rong-Ming Ho |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2006 |
畢業學年度: | 94 |
語文別: | 英文 |
論文頁數: | 125 |
中文關鍵詞: | 自組裝 、團聯共聚合物 、掌性 、微觀相分離 、結晶 、螺旋體結構 |
外文關鍵詞: | Self-assembly, Block Copolymer, Chirality, Microphase Separation, Crystallization, Helical Structure |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
The thin-film samples of polystyrene-b-poly(L-lactide) diblock copolymer (PS-PLLA) with fPLLAv=0.35 were prepared by solution casting in dichloromethane (CH2Cl2; 0.05wt%). As evidenced by scanning probe microscopy (SPM) and transmission electron microscopy (TEM), a rod-like structure can be obtained from quenched PS-PLLA melt at
175°C. On the basis of staining effect and energetic consideration, the structures quenched from melt were further identified the formation of core-shell cylinder structure. In contrast to the formation of nanohelical phase from the self-assembly of the PS-PLLA, the occurrence of the tertiary hierarchical superstructure, namely core-shell cylinder texture, is obviously different to the quaternary helical structure phase. Notably, the PLLA component is intrinsically a crystallizable polymer as a result of the regularity of the chiral configuration. The crystallization event is thus carried out to examine the effect of crystallization on hierarchical structures. Surprisingly, a helix-like texture for the PS-PLLA thin-film samples was observed by SPM and TEM after crystallization at which periodic height profile can be clearly identified by SPM for surface analysis and TEM for shadowed images; suggesting that the formation of helical superstructure. The periodic contrast can also be clearly identified in the inner-core microdomains of the core-shell texture by TEM for stained images and is comparable to the pitch length of helical texture. Similar results can also be obtained for samples crystallized at different temperatures; further confirming that the formation of helical superstructure is driven by crystallization. In addition, the core-shell cylinder structures were also formed at higher annealing temperatures. The results indicate the differences between crystallization and annealing effect on hierarchical self-assembly. Moreover, the crystalline helical superstructure gradually transforms into core-shell cylinder structure during melting. The morphological transformation from core-shell to helical superstructure is thus identified as a reversible mechanism. The crystallization process was also performed for PLLA homopolymers, and lamellar single crystals were observed by SPM and TEM; suggesting that the mutual repulsion between PS and PLLA blocks play an important role for the formation of helix-like curvature. To summarize the experimental results and similar to the concepts of chiral self-assembly, we suggest that the formation of helical textures is driven by an intrinsic bending force in addition to twisting due to molecular chirality. Moreover, in comparison with the results of amorphous texture, the helical assembly is attributed to the crystallization effect from the PLLA blocks. As a result, we suggest that the crystallization-enhanced chiral strength and microphase separation due to mutual repulsion are the major origins which provide the twisting force and bending moment to cause the spontaneous torsion of the edges of helical ribbon so as to form the helical shape. A probable mechanism with respect to molecular dispositions is thus proposed for the formation of hierarchical helical superstructure.
1. D. J. Prockop and A. Fertala. J. Struct. Biol. 1998, 122, 111.
2. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
3. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
7. Bate, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
8. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
9. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
10.Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289.
11.Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372.
12.Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Polym. Mater. Sci. Eng. 1999, 80, 29.
13.Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1477.
14.Discher, B. M; Won, Y,-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
15.Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793.
16.Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science, 1999, 284, 785.
17.Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
18.Nelson, J. C. et al. Science 1997, 277, 1793.
19.Engelkamp, H.; van Nostrum, C. F.; Picken, S. J.; Nolte, R. J. M. Chem. Commun. 1998, 979.
20.Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M. Angew. Chem. Int. Ed. 2000, 39, 233.
21.Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. J. Chem. Soc. Chem. Commun. 1995, 765.
22.Bassani, D. M.; Lehn, J.-M.; Baum, G.; Fenske, D.; Angew. Chem. Int. Ed. 1997, 36, 1845.
23.Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem. Eur. J. 1999, 12, 3471.
24.Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. E.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science, 2001, 293, 676.
25.Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
26.Nowick, J. S. Acc. Chem. Res. 1999, 32, 287.
27.Nolte, R. J. M. Chem. Soc. Rev. 1994, 23, 11.
28.Huang, J.-T.; Sun, J.; Euler, W. B.; Rosen, W. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 439.
29.Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. J. M.; Nolte, R. J. M. Science, 1998, 280, 1427.
30.Ho, R. M.; Chiang, Y. W.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Huang, B. H. J. Am. Chem. Soc. 2004, 126, 2704.
31.Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.
32.Green, M.M.; Nolte, R.J.M.; Meijer, E.W. Materials-Chirality, Chpater 6.
33.Spector, M. S.; Selinger, J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493 and references therein.
34.Gelbart, W. M.; Ben-Sshaul, A.; Roux, D. Micelles, Membranes, Microemulsions, and Monolayers; Springer-Verlag: New York, 1994.
35.Safran, S. A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; Addison-Wesley: Reading, MA, 1994.
36. Lipowsky, R.; Sackmann, E. Structure and Dynamics of Membranes;
Elsevier Science: New York, 1995.
37.de Gennes, P. G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, 1993.
38. Dahl, I.; Lagarwall, S. T. Ferroelectrics 1984, 58, 215.
39. Helfrich, W.; Prost, J. Phys. Rev. A 1988, 38, 3065.
40. Nelson, P.; Powers, T. Phys. Rev. Lett. 1992, 69, 3409.
41. Nelson, P.; Powers, T. J. Phys. II 1993, 3, 1535.
42. Ou-Yang, Z.; Liu, J. Phys. Rev. Lett. 1990, 65, 1679.
43. Ou-Yang, Z.; Liu, J. Phys. Rev. A 1991, 43, 6826.
44. Nandi, N.; Bagachi, B. J. Am. Chem. Soc. 1996, 118, 11208.
45.Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
46.Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
47. Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997, 277, 1225.
48. Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B.H.; Chun, M.; Quirk, R.P.;
Cheng, S.Z.D.; Hsiao, B.S.; Yeh, F.; Hashimoto, T. Phys Rev B 1999, 60: 10 022.
49.Yang, Y.W.; Tanodekaew, S.; Mai, S.M.; Booth, C.; Ryan, A.J.; Bras, W.; Viras, K. Macromolecules 1995, 28, 6029.
50. Ryan, A.J.; Hamley, I.W.; Bras, W.; Bates, F.S. Macromolecules
1995, 28, 3860.
51. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules
1992, 25, 2237.
52. Rangarajan, P.; Register, R.A.; Fetters, L.J.; Bras, W.; Naylor, S.; Ryan, A.J. Macromolecules 1995, 28, 4932.
53. Ryan, A.J.; Fairclough, J.P.A.; Hamley, I.W.; Mai, S.M.; Booth, C. Macromolecules 1997, 30, 1723.
54. Hillmyer, M.A.; Bates, F.S. Macromol Symp 1997, 117, 121.
55. Hamley, I.W.; Fairclough, J.P.A.; Bates, F.S.; Ryan, A.J. Polymer
1998, 39, 1429.
56. Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727.
57. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur Polym J 1992, 28, 1219.
58. Quiram, D.J.;Register, R.A.;Marchand, G.R.;Ryan, A.J. Macromolecules 1997, 30, 8338.
59. Mai, S.M.; Fairclough, J.P.A.; Viras, K.; Gorry, P.A.; Hamley, I.W.; Ryan, A.J.; Booth, C. Macromolecules 1997, 30, 8392.
60. Cohen, R.E.; Cheng, P.L.; Douzinas, K.C.; Kofinas, P.; Berney, C.V.; Macromolecules 1990, 23, 324.
61. Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
62.Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F.S. J Polym Sci, Polym Phys Ed 1999, 37, 2053.
63. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
64. Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J Polym Sci, Polym Phys Ed 1995, 33, 247.
65. Zhao, J.; Majumdar, B.; Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M. Macromolecules. 1996,29,1204.
66. Ho, R. M.; Lin, F. H.; Tsai, C. C.; Lin, C. C.;| Ko, B. T.; Hsiao, B. S.; and Sics, I. Macromolecules. 2004, 37, 5985-5994
67. Ho, R. M.; Chung, T. M.; Tsai, J. C.; Kuo, J. C.; Hsiao, B. S.; Sics, I.
Macromol. Rapid Commun. 2005, 26, 107–111
68. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
69. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30,8338.
70. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
71. Chiang, Y. W.; Ho, R. M.; Ko, B. T.; Lin, C. C. Angew. Chem. Int. Ed. 2005, 44, 7969.
72. Ho, R. M.; Chao, C. C. In preparation.
73. Russell, T. P.; Shin, D.; Shin, K.; Aamer, K. A.; Tew, G. N.; Lee, J. H.; Jho, J. Y. Macromolecules. 2005, 38, 104.
74. Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577
75. Keith, H. D.; Padden, F. J. J Polym Sci 1959, 3 (101), 123.
76. Keller, A. J Polym Sci 1959, 39, 151.
77. Price, F. P. J Polym Sci 1959, 39, 139.
78. Lustiger, A.; Lotz, B.; Duff, T. S. J Polym Sci, B: Polym Phys 1989, 27, 561.
79. Point, J.J. Bull Acad R Bel 1953, 41, 982.
80. Bassett, D. C.; Hodge, A. M. Proc R Soc Lond 1979, A359, 121.
Bassett, D. C.; Hodge, A. M. Proc R Soc Lond 1981, A377, 61.
Bassett, D. C.; Hodge, A. M. Polymer 1978, 19,469.
81. Toda, A.; Okamura, M.; Hikosaka, M.; Nakagawa, Y. Polymer 2003, 44, 6135.
82. Keith, H. D.; Chen, W. Y. Polymer 2002, 43, 6263.
83. Keith, H. D.; Padden, F. J. Jr. Polymer 1984, 25, 28.
84. Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000,33,7529.
85. Keith, H. D. Polymer 2001, 42, 9987.
86. Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C. Nature 1999, 399, 566.