簡易檢索 / 詳目顯示

研究生: 吳致緯
Chih-Wei Wu
論文名稱: 結晶性/掌性PS-PLLA雙團聯共聚合物之自組裝形態探討
Hierarchical Structures in Self-assembly of Semicrystalline PS-PLLA Chiral Diblock Copolymers
指導教授: 何榮銘
Rong-Ming Ho
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2006
畢業學年度: 94
語文別: 英文
論文頁數: 125
中文關鍵詞: 自組裝團聯共聚合物掌性微觀相分離結晶螺旋體結構
外文關鍵詞: Self-assembly, Block Copolymer, Chirality, Microphase Separation, Crystallization, Helical Structure
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The thin-film samples of polystyrene-b-poly(L-lactide) diblock copolymer (PS-PLLA) with fPLLAv=0.35 were prepared by solution casting in dichloromethane (CH2Cl2; 0.05wt%). As evidenced by scanning probe microscopy (SPM) and transmission electron microscopy (TEM), a rod-like structure can be obtained from quenched PS-PLLA melt at
    175°C. On the basis of staining effect and energetic consideration, the structures quenched from melt were further identified the formation of core-shell cylinder structure. In contrast to the formation of nanohelical phase from the self-assembly of the PS-PLLA, the occurrence of the tertiary hierarchical superstructure, namely core-shell cylinder texture, is obviously different to the quaternary helical structure phase. Notably, the PLLA component is intrinsically a crystallizable polymer as a result of the regularity of the chiral configuration. The crystallization event is thus carried out to examine the effect of crystallization on hierarchical structures. Surprisingly, a helix-like texture for the PS-PLLA thin-film samples was observed by SPM and TEM after crystallization at which periodic height profile can be clearly identified by SPM for surface analysis and TEM for shadowed images; suggesting that the formation of helical superstructure. The periodic contrast can also be clearly identified in the inner-core microdomains of the core-shell texture by TEM for stained images and is comparable to the pitch length of helical texture. Similar results can also be obtained for samples crystallized at different temperatures; further confirming that the formation of helical superstructure is driven by crystallization. In addition, the core-shell cylinder structures were also formed at higher annealing temperatures. The results indicate the differences between crystallization and annealing effect on hierarchical self-assembly. Moreover, the crystalline helical superstructure gradually transforms into core-shell cylinder structure during melting. The morphological transformation from core-shell to helical superstructure is thus identified as a reversible mechanism. The crystallization process was also performed for PLLA homopolymers, and lamellar single crystals were observed by SPM and TEM; suggesting that the mutual repulsion between PS and PLLA blocks play an important role for the formation of helix-like curvature. To summarize the experimental results and similar to the concepts of chiral self-assembly, we suggest that the formation of helical textures is driven by an intrinsic bending force in addition to twisting due to molecular chirality. Moreover, in comparison with the results of amorphous texture, the helical assembly is attributed to the crystallization effect from the PLLA blocks. As a result, we suggest that the crystallization-enhanced chiral strength and microphase separation due to mutual repulsion are the major origins which provide the twisting force and bending moment to cause the spontaneous torsion of the edges of helical ribbon so as to form the helical shape. A probable mechanism with respect to molecular dispositions is thus proposed for the formation of hierarchical helical superstructure.


    Abstract Contents List of Tables List of Figures Chapter 1 Introduction 1.1 Self-assembly 1.2 Self-assembly of Block Copolymers 1.3 Chiral Effect on Helical Self-assembly 1.3.1 Chirality 1.3.2 Theoretical Background of Chiral Self-assembly 1.3.3 Chirality Effect on Different Length-Scale Assembles 1.3.4 Nanohelical Phase in Chiral Diblock Copolymers 1.4 Crystallization Effect 1.4.1 Crystallization Effect on Semicrystalline Diblock Copolymers 1.4.2 Crystallization Effect on Chiral Block Copolymers 1.4.3 Banded Spherulities of Semicrystalline Block Copolymers 1.5 The Origins of Twisting Polymer Crystals 1.5.1 Lamellar Twist as a result of Screw Dislocations 1.5.2 Lamellar Twist as a result of Surface Stresses Chapter 2 Objectives Chapter 3 Experimental Details 3.1 Instruments 3.2 Experimental Section 3.3 Equipment 3.3.1 Transmission Electron Microscopy (TEM) 3.3.2 Scanning Probe Microscopy (SPM) 3.3.3 Differential Scanning Calorimetry (DSC) Chapter 4 Results and Discussion 4.1 Thermal Properties of PS28-PLLA17 (fPLLAv = 0.35) 4.2 Tertiary Structures of Melt-quenched PS28-PLLA17 (fPLLAv = 0.35) Thin Films 4.3 Tertiary Structures of Melt-quenched PS28-PLLA17 (fPLLAv = 0.35) Thin Films 4.4 Temperature Effect 4.5 PLLA Homopolymers versus PS-PLLA Diblock Copolymers 4.6 Proposed Model for the Formation of Crystalline Helical Structure Chapter 5 Conclusion Chapter 6 Future Work Chapter 7 References

    1. D. J. Prockop and A. Fertala. J. Struct. Biol. 1998, 122, 111.
    2. Whitesides, G. M.; Grzybowski, B. Science 2002, 295, 2418.
    3. Philip, D.; Stoddart, J. F. Angew. Chem. Int. Ed. 1996, 35, 1155.
    4. Jakubith, S.; Rotermund, H. H.; Engel, W.; von Oertzen, A.; Ertl, G. Phys. Rev. Lett. 1990, 65, 3013.
    5. Whitesides, G. M.; Ismagilov, R. F. Science 1999, 284, 89.
    6. Clark, T. D.; Tien, J.; Duffy, D. C.; Paul, K. E.; Whitesides, G. M. J. Am. Chem. Soc. 2001, 123, 7677.
    7. Bate, F. S.; Fredrickson, G. H. Annu. Rev. Phys. Chem. 1990, 41, 525.
    Bates, F. S.; Fredrickson, G. H. Phys Today 1999, 52, 32.
    8. Matsen, M. W.; Bates, F. S. Macromolecules 1996, 29, 7641.
    9. Gast, A. P.; Hall, C. K.; Russel, W. B. J Colloid Interface Sci 1983, 96, 251.
    10.Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Macromolecules 2000, 33, 8289.
    11.Jenekhe, S. A.; Chen, X. L. Science 1999, 283, 372.
    12.Sommerdijk, N. A. J. M.; Holder, S. J.; Hiorns, R. C.; Jones, R. G.; Nolte, R. J. M. Polym. Mater. Sci. Eng. 1999, 80, 29.
    13.Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science 1998, 280, 1477.
    14.Discher, B. M; Won, Y,-Y.; Ege, D. S.; Lee, J. C.-M.; Bates, F.; Discher, D. E.; Hammer, D. A. Science 1999, 284, 1143.
    15.Nelson, J. C.; Saven, J. G.; Moore, J. S.; Wolynes, P. G. Science 1997, 277, 1793.
    16.Engelkamp, H.; Middelbeek, S.; Nolte, R. J. M. Science, 1999, 284, 785.
    17.Lokey, R. S.; Iverson, B. L. Nature 1995, 375, 303.
    18.Nelson, J. C. et al. Science 1997, 277, 1793.
    19.Engelkamp, H.; van Nostrum, C. F.; Picken, S. J.; Nolte, R. J. M. Chem. Commun. 1998, 979.
    20.Cuccia, L. A.; Lehn, J.-M.; Homo, J.-C.; Schmutz, M. Angew. Chem. Int. Ed. 2000, 39, 233.
    21.Hanan, G. S.; Lehn, J.-M.; Kyritsakas, N.; Fischer, J. J. Chem. Soc. Chem. Commun. 1995, 765.
    22.Bassani, D. M.; Lehn, J.-M.; Baum, G.; Fenske, D.; Angew. Chem. Int. Ed. 1997, 36, 1845.
    23.Ohkita, M.; Lehn, J.-M.; Baum, G.; Fenske, D. Chem. Eur. J. 1999, 12, 3471.
    24.Cornelissen, J. J. L. M.; Donners, J. J. J. M.; Gelder, R. E.; Graswinckel, W. S.; Metselaar, G. A.; Rowan, A. E.; Sommerdijk, N. A. J. M.; Nolte, R. J. M. Science, 2001, 293, 676.
    25.Gellman, S. H. Acc. Chem. Res. 1998, 31, 173.
    26.Nowick, J. S. Acc. Chem. Res. 1999, 32, 287.
    27.Nolte, R. J. M. Chem. Soc. Rev. 1994, 23, 11.
    28.Huang, J.-T.; Sun, J.; Euler, W. B.; Rosen, W. J. Polym. Sci. Part A Polym. Chem. 1997, 35, 439.
    29.Cornelissen, J. J. L. M.; Fischer, M.; Sommerdijk, N. J. M.; Nolte, R. J. M. Science, 1998, 280, 1427.
    30.Ho, R. M.; Chiang, Y. W.; Tsai, C. C.; Lin, C. C.; Ko, B. T.; Huang, B. H. J. Am. Chem. Soc. 2004, 126, 2704.
    31.Shimizu, T.; Masuda, M.; Minamikawa, H. Chem. Rev. 2005, 105, 1401.
    32.Green, M.M.; Nolte, R.J.M.; Meijer, E.W. Materials-Chirality, Chpater 6.
    33.Spector, M. S.; Selinger, J. V.; Singh, A.; Rodriguez, J. M.; Price, R. R.; Schnur, J. M. Langmuir 1998, 14, 3493 and references therein.
    34.Gelbart, W. M.; Ben-Sshaul, A.; Roux, D. Micelles, Membranes, Microemulsions, and Monolayers; Springer-Verlag: New York, 1994.
    35.Safran, S. A. Statistical Thermodynamics of Surfaces, Interfaces, and Membranes; Addison-Wesley: Reading, MA, 1994.
    36. Lipowsky, R.; Sackmann, E. Structure and Dynamics of Membranes;
    Elsevier Science: New York, 1995.
    37.de Gennes, P. G.; Prost, J. The Physics of Liquid Crystals; Oxford University Press: Oxford, 1993.
    38. Dahl, I.; Lagarwall, S. T. Ferroelectrics 1984, 58, 215.
    39. Helfrich, W.; Prost, J. Phys. Rev. A 1988, 38, 3065.
    40. Nelson, P.; Powers, T. Phys. Rev. Lett. 1992, 69, 3409.
    41. Nelson, P.; Powers, T. J. Phys. II 1993, 3, 1535.
    42. Ou-Yang, Z.; Liu, J. Phys. Rev. Lett. 1990, 65, 1679.
    43. Ou-Yang, Z.; Liu, J. Phys. Rev. A 1991, 43, 6826.
    44. Nandi, N.; Bagachi, B. J. Am. Chem. Soc. 1996, 118, 11208.
    45.Zalusky, A. S.; Olayo-Valles, R.; Taylor, C. J.; Hillmyer, M. A. J. Am. Chem. Soc. 2001, 123, 1519.
    46.Zalusky, A. S.; Olayo-Valles, R.; Wolf, J. H.; Hillmyer, M. A. J. Am. Chem. Soc. 2002, 124, 12761.
    47. Muthukumar, M.; Ober, C. K.; Thomas, E. L. Science 1997, 277, 1225.
    48. Zhu, L.; Chen, Y.; Zhang, A.; Calhoun, B.H.; Chun, M.; Quirk, R.P.;
    Cheng, S.Z.D.; Hsiao, B.S.; Yeh, F.; Hashimoto, T. Phys Rev B 1999, 60: 10 022.
    49.Yang, Y.W.; Tanodekaew, S.; Mai, S.M.; Booth, C.; Ryan, A.J.; Bras, W.; Viras, K. Macromolecules 1995, 28, 6029.
    50. Ryan, A.J.; Hamley, I.W.; Bras, W.; Bates, F.S. Macromolecules
    1995, 28, 3860.
    51. Nojima, S.; Kato, K.; Yamamoto, S.; Ashida, T. Macromolecules
    1992, 25, 2237.
    52. Rangarajan, P.; Register, R.A.; Fetters, L.J.; Bras, W.; Naylor, S.; Ryan, A.J. Macromolecules 1995, 28, 4932.
    53. Ryan, A.J.; Fairclough, J.P.A.; Hamley, I.W.; Mai, S.M.; Booth, C. Macromolecules 1997, 30, 1723.
    54. Hillmyer, M.A.; Bates, F.S. Macromol Symp 1997, 117, 121.
    55. Hamley, I.W.; Fairclough, J.P.A.; Bates, F.S.; Ryan, A.J. Polymer
    1998, 39, 1429.
    56. Nojima, S.; Kikuchi, N.; Rohadi, A.; Tanimoto, S.; Sasaki, S. Macromolecules 1999, 32, 3727.
    57. Ishikawa, S.; Ishizu, K.; Fukutomi, T. Eur Polym J 1992, 28, 1219.
    58. Quiram, D.J.;Register, R.A.;Marchand, G.R.;Ryan, A.J. Macromolecules 1997, 30, 8338.
    59. Mai, S.M.; Fairclough, J.P.A.; Viras, K.; Gorry, P.A.; Hamley, I.W.; Ryan, A.J.; Booth, C. Macromolecules 1997, 30, 8392.
    60. Cohen, R.E.; Cheng, P.L.; Douzinas, K.C.; Kofinas, P.; Berney, C.V.; Macromolecules 1990, 23, 324.
    61. Hamley, I. W.; Fairclough, J. P. A.; Ryan, A. J.; Bates, F. S.; Towns-Andrews, E. Polymer 1996, 37, 4425.
    62.Weimann, P. A.; Hajduk, D. A.; Chu, C.; Chaffin, K. A.; Brodil, J. C.; Bates, F.S. J Polym Sci, Polym Phys Ed 1999, 37, 2053.
    63. Hamley, I. W.; Fairclough, J. P. A.; Terrill, N. J.; Ryan, A. J.; Lipic, P. M.; Bates, F. S.; Towns-Andrews, E. Macromolecules 1996, 29, 8835.
    64. Khandpur, A. K.; Macosko, C. W.; Bates, F. S. J Polym Sci, Polym Phys Ed 1995, 33, 247.
    65. Zhao, J.; Majumdar, B.; Schulz, M. F.; Bates, F. S.; Almdal, K.; Mortensen, K.; Hajduk, D. A.; Gruner, S. M. Macromolecules. 1996,29,1204.
    66. Ho, R. M.; Lin, F. H.; Tsai, C. C.; Lin, C. C.;| Ko, B. T.; Hsiao, B. S.; and Sics, I. Macromolecules. 2004, 37, 5985-5994
    67. Ho, R. M.; Chung, T. M.; Tsai, J. C.; Kuo, J. C.; Hsiao, B. S.; Sics, I.
    Macromol. Rapid Commun. 2005, 26, 107–111
    68. Quiram, D. J.; Register, R. A.; Marchand, G. R. Macromolecules 1997, 30, 4551.
    69. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Ryan, A. J. Macromolecules 1997, 30,8338.
    70. Quiram, D. J.; Register, R. A.; Marchand, G. R.; Adamson, D. H. Macromolecules 1998, 31, 4891.
    71. Chiang, Y. W.; Ho, R. M.; Ko, B. T.; Lin, C. C. Angew. Chem. Int. Ed. 2005, 44, 7969.
    72. Ho, R. M.; Chao, C. C. In preparation.
    73. Russell, T. P.; Shin, D.; Shin, K.; Aamer, K. A.; Tew, G. N.; Lee, J. H.; Jho, J. Y. Macromolecules. 2005, 38, 104.
    74. Lotz, B.; Cheng, S. Z. D. Polymer 2005, 46, 577
    75. Keith, H. D.; Padden, F. J. J Polym Sci 1959, 3 (101), 123.
    76. Keller, A. J Polym Sci 1959, 39, 151.
    77. Price, F. P. J Polym Sci 1959, 39, 139.
    78. Lustiger, A.; Lotz, B.; Duff, T. S. J Polym Sci, B: Polym Phys 1989, 27, 561.
    79. Point, J.J. Bull Acad R Bel 1953, 41, 982.
    80. Bassett, D. C.; Hodge, A. M. Proc R Soc Lond 1979, A359, 121.
    Bassett, D. C.; Hodge, A. M. Proc R Soc Lond 1981, A377, 61.
    Bassett, D. C.; Hodge, A. M. Polymer 1978, 19,469.
    81. Toda, A.; Okamura, M.; Hikosaka, M.; Nakagawa, Y. Polymer 2003, 44, 6135.
    82. Keith, H. D.; Chen, W. Y. Polymer 2002, 43, 6263.
    83. Keith, H. D.; Padden, F. J. Jr. Polymer 1984, 25, 28.
    84. Ho, R. M.; Ke, K. Z.; Chen, M. Macromolecules 2000,33,7529.
    85. Keith, H. D. Polymer 2001, 42, 9987.
    86. Oda, R.; Huc, I.; Schmutz, M.; Candau, S. J.; MacKintosh, F. C. Nature 1999, 399, 566.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE