簡易檢索 / 詳目顯示

研究生: 姜俊成
Chiang, Chun-Cheng
論文名稱: The Gas Phase Reaction Between Hydroxide Ion and S-ethyl Thioacetate in DFT Theory
以密度泛函理論研究Hydroxide Ion及S-ethyl Thioacetate之化學反應路徑
指導教授: 林志侯
Lin, Thy-Hou
口試委員:
學位類別: 碩士
Master
系所名稱: 生命科學暨醫學院 - 分子醫學研究所
Institute of Molecular Medicine
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 51
中文關鍵詞: 密度泛函水解
外文關鍵詞: dft, thioester, hydrolysis
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • The potential energy surface for the solvent-free thioacetate hydrolysis reaction has been characterized by high level ab initio calculations of B3LYP/6-31++G(d,p). These calculations reveal that the approach of an OH ion leads to the formation of ion-molecule complex. The MS1 species with the hydroxide ion bound to acetyl and alkyl sides of thioacetate by C-H-O interactions. There are two reaction pathways to generate ethylthio anion and acetic acid products. One of the pathways reacts to Ethylthio anion, ketene and water complex intermediate structure, and the other reaction pathway leads to a famous intermediate structure, tetrahedral structure. We compared all the energies with other calculation theory to obtain the best theory for our study. Quantum calculations also predict that the transition states and intermediate structures for s-proply thioacetate and s-isoproply thioacetate.


    Abstract 摘要 致謝 Chapter 1 Introduction Chapter 2 Theories 2.1. Quantum mechanics 2.2. Density Functional Theory 2.3. Thomas-Fermi model 2.4. Hohenberg-Kohn theory 2.5. Kohn-Sham theory 2.6. Basis function 2.7. Theory of finding transition state and reaction pathway Chapter 3 Methods and Results 3.1. S-ethyl thioacetate 3.1.1. Prepare reactants and products structures 3.1.2. Locate transition states and intermediates 3.1.3. IRC calculation 3.1.4. Energy calculation 3.2. S-propyl thioacetate 3.3. S-isopropyl thioacetate Chapter 4 Discussion References

    (1) Lowry, T. H. r., K. S. Mechanism and Theory in Organic Chemistry, third edition ed.; Harper and Row: New York, 1987.
    (2) McMurry, J. Organic chemistry : a biological approach; Thomson Brooks/Cole: Belmont CA., 2007.
    (3) Li, P.; Zhao, K.; Deng, S. X.; Landry, D. W. Helv. Chim. Acta 1999, 82, 85.
    (4) Bowden, K.; Battah, S. J. Chem. Soc.-Perkin Trans. 2 1998, 1603.
    (5) Zhan, C. G.; Landry, D. W.; Ornstein, R. L. J. Am. Chem. Soc. 2000, 122, 2621.
    (6) Sherer, E. C.; Yang, G.; Turner, G. M.; Shields, G. C.; Landry, D. W. J. Phys. Chem. A 1997, 101, 8526.
    (7) Zhan, C. G.; Landry, D. W.; Ornstein, R. L. J. Am. Chem. Soc. 2000, 122, 1522.
    (8) Williams, A. Enzyme mechanismsBurlington: London.
    (9) Jencks, W. P. Catalysis in chemistry and enzymology; Dover.: New York
    (10) Bakowies, D.; Kollman, P. A. J. Am. Chem. Soc. 1999, 121, 5712.
    (11) Turner, G. M.; Sherer, E. C.; Shields, G. C. “A COMPUTATIONALLY EFFICIENT PROCEDURE FOR MODELING THE FIRST STEP IN THE ALKALINE-HYDROLYSIS OF ESTERS”, 1995.
    (12) Sherer, E. C.; Turner, G. M.; Shields, G. C. “INVESTIGATION OF THE POTENTIAL-ENERGY SURFACE FOR THE FIRST STEP IN THE ALKALINE-HYDROLYSIS OF METHYL ACETATE”, 1995.
    (13) Haeffner, F.; Hu, C. H.; Brinck, T.; Norin, T. Theochem-J. Mol. Struct. 1999, 459, 85.
    (14) Stein, R. L.; Strimpler, A. M.; Hori, H.; Powers, J. C. Biochemistry 1987, 26, 1301.
    (15) Stein, R. L.; Strimpler, A. M.; Hori, H.; Powers, J. C. Biochemistry 1987, 26, 1305.
    (16) Vencill, C. F.; Rasnick, D.; Crumley, K. V.; Nishino, N.; Powers, J. C. Biochemistry 1985, 24, 3149.
    (17) Weingarten, H.; Martin, R.; Feder, J. Biochemistry 1985, 24, 6730.
    (18) Ye, Q. Z.; Johnson, L. L.; Hupe, D. J.; Baragi, V. Biochemistry 1992, 31, 11231.
    (19) Douglas, K. T. Accounts Chem. Res. 1986, 19, 186.
    (20) Staunton, J.; Weissman, K. J. Nat. Prod. Rep. 2001, 18, 380.
    (21) Wong, B. J.; Gerlt, J. A. J. Am. Chem. Soc. 2003, 125, 12076.
    (22) Benning, M. M.; Taylor, K. L.; Liu, R. Q.; Yang, G.; Xiang, H.; Wesenberg, G.; DunawayMariano, D.; Holden, H. M. Biochemistry 1996, 35, 8103.
    (23) Jones, G. I. L.; Lister, D. G.; Owen, N. L.; Gerry, M. C. L.; Palmieri, P. J. Mol. Spectrosc. 1976, 60, 348.
    (24) True, N. S.; Bohn, R. K. J. Am. Chem. Soc. 1976, 98, 1188.
    (25) True, N. S.; Silvia, C. J.; Bohn, R. K. J. Phys. Chem. 1981, 85, 1132.
    (26) Deerfield, D. W.; Pedersen, L. G. Theochem-J. Mol. Struct. 1995, 358, 99.
    (27) Romano, R. M.; Della Vedova, C. O.; Downs, A. J. J. Phys. Chem. A 2002, 106, 7235.
    (28) R. A., v. S., Matthew Neurock Molecular Heterogeneous Catalysis: A Conceptual and Computational Approcah; Wiley-VCH, 2006.
    (29) Hammer, B.; Norskov, J. K. Theoretical surface science and catalysis - Calculations and concepts. In Advances in Catalysis, Vol 45; Academic Press Inc: San Diego, 2000; Vol. 45; pp 71.
    (30) Lambert, R. M. P., G. Chemisorption and Reactivity on Supported Clusters and Thin Films; Kluwer, 1997.
    (31) March, N. H., Lundqvist, S. Theory of the Inhomogeneous Electron Gas; Plenum Press, 1983.
    (32) Slater, J. C. Quantum Theory of Molecular and Solids Vol 4 : The Self-Consistent Field for Molecular and Solids; McGraw-Hill: New York, 1974.
    (33) Becke, A. D. Phys. Rev. A 1988, 38, 3098.
    (34) Lee, C. T.; Yang, W. T.; Parr, R. G. Phys. Rev. B 1988, 37, 785.
    (35) Miehlich, B.; Savin, A.; Stoll, H.; Preuss, H. Chem. Phys. Lett. 1989, 157, 200.
    (36) Becke, A. D. J. Chem. Phys. 1993, 98, 5648.
    (37) Foresman, J. B. exploring chemistry with electronic structure methods:a guide to using Gaussian; Gaussian, 1993.
    (38) Guan, J. G.; Duffy, P.; Carter, J. T.; Chong, D. P.; Casida, K. C.; Casida, M. E.; Wrinn, M. J. Chem. Phys. 1993, 98, 4753.
    (39) Chen, X.; Brauman, J. I. J. Phys. Chem. A 2005, 109, 8553.
    (40) NIST webbook http://webbook.nist.gov/chemistry/
    (41) Jorgensen, W. L.; Blake, J. F.; Madura, J. D.; Wierschke, S. D. Acs Symposium Series 1987, 353, 200.
    (42) Pranata, J. J. Phys. Chem. 1994, 98, 1180.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE