研究生: |
朱玉婷 Chu, Yu-Ting |
---|---|
論文名稱: |
使用硬體架構模擬管線化處理結果-改善有限張數投影下同步代數重建法之重建速度 Acceleration of CT Reconstruction for the SART algorithm : A Hardware Simulation Study |
指導教授: |
林士傑
Lin, Shin-Chieh |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 中文 |
論文頁數: | 96 |
中文關鍵詞: | X 射線電腦斷層掃瞄法 、硬體架構 、代數重建法 、管線化 |
外文關鍵詞: | X-Ray Computer Tomography, ART, Pipeline, Hardware |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
傳統的二維自動光學檢測(Automatic Optical Inspection),通常僅能檢測物件表面缺陷。而內部瑕疵,需透過X 射線電腦斷層掃瞄法(Computer Tomography)進行三維結構的影像重建,進而判斷缺陷。
常見的重建方法有兩類, 一類為濾波逆投影法( Filtered
Back-Projection,FBP),另一類為代數重建法(Algebraic ReconstructionTechnique,ART)。在投影數較少時,利用ART 所得影像要比利用FBP 好的多,但是,因ART 影像重建的速度太慢,在運算速度上無法達到使用者的需求。
為了要加速運算,本研究將評估採用硬體架構進行管線化
(Pipeline)處理之可行性。先對ART 演算法,進行軟體C 程式的分析,評估其硬體設計所需的記憶體空間及資料流量,進而以Verilog 硬體設計語言,模擬使用硬體管線化處理後,對演算法加速的效果。
此硬體架構對一重建區 61 x 61 x 33 Voxels 和感測器大小181 x 181 的灰階影像進行影像重建。在100MHz 的工作時脈下,只需約0.77秒的運算時間。而Matlab 平台上模擬則需要5100 秒[1],才能完成全部的運算。因此本論文所提之架構的模擬速度比Matlab 平台上快了6623 倍。此硬體架構將提供使用者更高的使用彈性。
[1] 王澤理,「應用類神經網路改善有限張數投影下濾波逆投影法之
重建影像」,國立清華大學動力機械所,2009 年6 月。
[2] AMD Functional Data Sheet, 754 Pin Package, Advanced Micro Devices, New York, 2004.
[3] T. D. Moore, “Three-Dimensional X-Ray Laminography as A Tool for Detection and Characterization of BGA Package Defects,” IEEE,Transactions on Components and Packaging Technologies, Vol.25, No. 2, pp. 224-229, June 2002.
[4] 林源益,「應用同步代數重建法於BGA 檢測之研究」,國立清華
大學動力機械所,2008 年6 月。
[5] S. Krimmel, J. Stephan, and J. Baumann, “3D Computed Tomography Using A Microfocus X-ray Source: Analysis of Artifact Formation in The Reconstructed Images Using Simulated as well as Experimental Projection Data,” Nuclear Instruments and Methods in Physics Research, Section A-542, pp. 399-407, February 2005.
[6] S. Gondrom, and M. Maisl, “3D Reconstructions of Micro-System Using X-Ray Tomographic Methods,” Fraunhofer Development Center X-Ray Technology, Saarbruecken, Germany, 2004.
[7] A. C. Kak and M. Slaney, ”Principles of Computerized Tomographic Imaging,” IEEE Press, 1988.
[8] G. T. Herman, “Image Reconstruction From Projections : The Fundamental of Computed Tomography,” Academic Press, 1980.
[9] Y. Censor, “Finite Series-Expansion Reconstruction Methods,”Proceedings of IEEE, Vol. 71, No. 3, March 1983.
[10] Y. J. Roh, and H.S. Cho, “Implementation of Uniform and Simultaneous ART for 3D Reconstruction in An X-ray Imaging system,” IEEE Image Signal Process, Vol. 151, 2004.
[11] S. Kaczmarz, “Angenaherte Auflosung Von Systemen Linearer Gleichungen,” Bull. Acad. Pol. Sci. Lett. A, Vol. 6-8A, pp. 355-357,1937.
[12] K. Tanabe, “Projection Method for Solving a Singular System,”Numer. Math., Vol. 17, pp. 203-214, 1971.
[13] A. H. Andersen, and A.C. Kak, “Simultaneous Algebraic
Reconstruction Technique (SART): A Superior Implementation of The ART Algorithm,” Ultrasonic Imaging, Vol. 6, pp. 81-94, 1984.
[14] B. Keck, H. Hofmann, H. Scherl, M. Kowarschik, and J. Horneggera,“GPU-Accelerated SART Reconstruction Using the CUDA Programming Environment,” Proc. SPIE Vol. 7258 72582B-1,2009.
[15] Jr. E. E. Swartzlander, and B. K. Gilbert,“Arithmetic for Ultra-High-Speed Tomography,” Proc. IEEE Transactions on Computers, C-29(5):341–353, 1980.
[16] W. F. Jones, L. G. Byars, and M. E. Casey, “Positron Emission Tomographic Images and Expectation Maximization: a VLSI Architecture for Multiple Iterations Per Second,” Proc. IEEE Transactions on Nuclear Science, 35(2):620–624, 1988.
[17] W. F. Jones, L. G. Byars, and M. E. Casey, “Design of a Super Fast Three-Dimensional Projection System for Positron Emission Tomography,” Proc. IEEE Transactions on Nuclear Science,37(2):800–804, 1990.
[18] Z. E. D. G. D. Der, I. Der, and N. T. F. I Der, “An FPGA-based 3D Backprojector,” Saarbrぴucken, 2003.
[19] TeraRecon 公司。http://www.terarecon.com。
[20] F. Xu ,and K. Mueller, “Accelerating Popular Tomographic Reconstruction Algorithms on Commodity PC Graphics Hardware,”Proc. IEEE Transactions on Nuclear Science, vol. 52, no. 3, 2005.
[21] M. Trepanier ,and I. Goddard, “Adjunct processors in embedded medical imaging systems,” Proc. SPIE vol. 4681, Medical Imaging:Visualization, Image-Guided Procedures and Display, pages 416–424, 2002.
[22] Mercury Computer Systems 公司。http://www.mc.com。
[23] D. A. Patterson, J. L. Hennessy,「計算機組織與設計」,東華書局股份有限公司,台北市,2005。
[24] K. Mueller, R. Yagel, and J. J. Wheller, “Anti-Aliased
Three-Dimensional Cone-Beam Reconstruction of Low-Contrast
Objects with Algebraic Methods,” IEEE Transactions On Medical Imaging, Vol. 18, No. 6, June 1999.