研究生: |
李柏翰 Lee, Po-Han |
---|---|
論文名稱: |
二氧化碳甲烷化固定床反應器之數值分析 Numerical analysis of CO2 methanation in fixed-bed reactors |
指導教授: |
許文震
Sheu, Wen-Jenn |
口試委員: |
王訓忠
Wong, Shwin-Chung 陳炎洲 Chen, Yen-Cho |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 58 |
中文關鍵詞: | 二氧化碳 、甲烷化 、數值分析 、固定床 、管狀反應器 |
外文關鍵詞: | Methanation, Carbon-dioxide, Fix-bed, Numerical, Tubular reactor |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
為因應全球暖化議題,二氧化碳之捕獲與回收再利用成為一具潛力之研究項目,本文旨在利用COMSOL軟體,以數值分析方式針對CO2甲烷化反應器做性能之探討。本文主要可分為兩個部分:(1)針對既有管狀CO2甲烷化反應器之實驗結果做模擬驗證,並進一步調整不同參數,探討溫度、觸媒量、入口成分比例等參數變化對於反應器性能之影響。(2)提出一種新式的反應器設計,在原有管狀反應器基礎結構上添加熱回收機制,並以數值分析方式,將其與原有之管狀反應器,在相同參數設定下,做性能比較。結果顯示:(1) 將操作溫度控制在300℃左右,流量低於3ml/s,H2/CO2大於4,適當增加觸媒填充量(高於入口CO2之莫爾數),配合水氣轉移反應器的添加移除水蒸氣,可使反應器的反應條件達到最佳化。(2)熱回收機制的添加能有效優化原有反應器之性能,主要成果反映在均勻的熱分布能讓反應器在具有熱損耗之現實操作情況,不同參數調整所帶來之不利影響下,同樣保持著高甲烷化轉換效率。
For the issue of global warming, the capture and utilization of carbon dioxide have significant potential in the research aspect of power generation. In this work, we use the COMSOL software to analyze numerically on performance of CO2 methanation reactor. This work can be divided into two main parts as follows. (1) We use the numerical method to verify the results from experiment of tubular CO2 methanator, furthermore; we investigate the effects of adjusting parameters such as operating temperature, catalyst loading, and consistent of inlet on performance. (2) We propose a new design of reactor- combine the reactor with heat recovery. Then we study on the relevant improvement which is compared with original geometry by numerical method. The results show that (1) To optimize the function of reactor, we need to control the operating temperature around 300℃, the volume flow rate lower than 3ml/s, H2/CO2 ratio higher than 4, appropriately increasing the catalyst loading and the water gas shift mechanism. (2) Considering the heat loss for the real situation in life, because of the even distribution of heat, the CO2 methanator with heat recovery can effectively improve the CO2 conversion and maintain a high efficiency under unfavorable conditions.
1. G. Garbarino, P. Riani, L. Magistri, G. Busca, 2014, A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure, International Journal of Hydrogen Energy, Vol. 39, p. 11557-11565.
2. N. R. Parlikkad, S. Chambrey, P. Fongarland, N. Fatah, A. Khodakov,S. Capela, O. Guerrini, 2013, Modeling of fixed bed methanation reactor for syngas production: Operating window and performance characteristics, Fuel, Vol. 107, p. 254-260.
3. R. Razzaq, C. Li , M. Usman, K. Suzuki, S. Zhang, 2015, A highly active and stable CO4N-gamma-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas, Chemical Engineering Journal, Vol. 262, p. 1090-1098.
4. M.A.A. Aziz , A.A. Jalil, S. Triwahyono , M.W.A. Saad , 2015, CO2 methanation over Ni-promoted mesostructured silica nanoparticles: Influence of Ni loading and water vapor on activity and response surface methodology studies, Chemical Engineering Journal, Vol. 260, p. 757-764.
5. R. Razzaq, C. Li, M. Usman, K. Suzuki, S. Zhang, 2015, A highly active and stable CO4N/c-Al2O3 catalyst for CO and CO2 methanation to produce synthetic natural gas (SNG), Chemical Engineering Journal, Vol. 262,p. 1090-1098.
6. M. A. A. Aziz, A. A. Jalil, S. Triwahyono and A. Ahmad, 2015 , CO2 methanation over heterogeneous catalysts: recent progress and future prospects, Green Chemistry, Vol. 17, p. 2647-2633.
7. C. Bassano, P. Deiana, L. Pacetti, N. Verdone, 2015, Integration of SNG plants with Carbon Capture and Storage Technologies Modeling, Fuel, Vol. 161, p. 355-363.
8. H. C. Wu, Y. C. Chang, J. H. Wu, J. H. Lin, I. K. Lin and C. S. Chen, 2015, Methanation of CO2 and reverse water gas shift reactions on Ni/SiO2catalysts: the influence of particle size on selectivity and reaction pathway, Catalysis Science & Technology, Vol. 5, p. 4154-4163.
9. J. Liu, D. Cui, J. Yu, F. Su, G. Xu, 2015, Performance characteristics of fluidized bed syngas methanation over Ni–Mg/Al2O3 catalyst, Chinese Journal of Chemical Engineering, Vol. 23, p. 86-92.
10. G. Garbarino, P. Riani, L. Magistri, G. Busca, 2014, A study of the methanation of carbon dioxide on Ni/Al2O3 catalysts at atmospheric pressure, International Journal of Hydrogen Energy, Vol. 39, p. 11557-11565.
11. S. Walspurger, G. D. Elzinga, J. W. Dijkstra, M. Saric, W. G. Haije, 2014, Sorption enhanced methanation for substitute natural gas production: Experimental results and thermodynamic considerations, Chemical Engineering Journal, Vol. 242, p. 379-386.
12. S. Rahmani, M. Rezaei, F. Meshkani, 2014, Preparation of highly active nickel catalysts supported on mesoporous nanocrystalline γ-Al2O3 for CO2 methanation, Journal of Industrial and Engineering Chemistry, Vol. 20, p. 1346-1352.
13. P. Zhu, Q. Chen, Y. Yoneyama and N. Tsubaki, 2014, Nanoparticle modified Ni-based bimodal pore catalysts for enhanced CO2 methanation, RSC Advances, Vol. 4, p. 64617-64624.
14. M.A.A. Aziz, A.A. Jalil, S. Triwahyono, R.R. Mukti, Y.H. Taufiq-Yap, M.R. Sazegar, 2014, Highly active Ni-promoted mesostructured silica nanoparticles for CO2 methanation, Applied Catalysis B: Environmental, Vol. 147, p. 359-368.
15. A. Swapnesh, V. C. Srivastava, I. D. Mall, 2014, Comparative Study on Thermodynamic Analysis of CO2 Utilization Reactions, Chemical Engineering & Technology, Vol. 37, p. 1765-1777.
16. D. Schlereth, O. Hinrichsen, 2014, A fixed-bed reactor modeling study on themethanation of CO2, Chemical Engineering Research and Design, Vol. 92, p. 702-712.
17. S. Abello, C. Berrueco, D. Montane, 2013, High-loaded nickel–alumina catalyst for direct CO2 hydrogenation into synthetic natural gas (SNG), Fuel, Vol. 113, p. 598-609.
18. Z. Lia, H. Wanga, E. Wanga, J. Lva, Y. Shanga, G. Ding, B. Wang, X. Ma, S. Qin, and Q. Su, 2013, The Main Factors Controlling Generation of Synthetic Natural Gas by Methanation of Synthesis Gas in the Presence of Sulfur-Resistant Mo-Based Catalysts, Kinetics and Catalysis, Vol. 54, p. 338-343.
19. N. R. Parlikkad, S. Chambrey, P. Fongarland, N. Fatah, A. Khodakov,S. Capela, O. Guerrini, 2013, Modeling of fixed bed methanation reactor for syngas production: Operating window and performance characteristics, Fuel, Vol. 107, p. 254-260.
20. A. Karelovic, P. Ruiz, 2013, Mechanistic study of low temperature CO2 methanation over Rh/TiO2 catalysts, Journal of Catalysis, Vol. 301, p. 141-153.
21. A. Karelovic, P. Ruiz, 2013, Improving the Hydrogenation Function of Pd/γ-Al2O3 Catalyst by Rh/γ-Al2O3 Addition in CO2 Methanation at Low Temperature, ACS Catalysis, Vol.3 , p. 2799-2813.
22. W. R. Kang, K. B. Lee, 2013, Effect of operating parameters on methanation reaction for the production of synthetic natural gas, Catalysis, Reaction Engineering, Vol. 30, p. 1386-1394.
23. D. Cheng, F. R. Negreiros, E. Apr, A. Fortunelli, 2013, Computational Approaches to the Chemical Conversion of Carbon Dioxide, CHEMSUSCHEM, Vol. 6, p. 944-965.
24. S. Tada, T. Shimizu, H. Kameyama, T. Haneda , R. Kikuchi, 2012, Ni/CeO2 catalysts with high CO2 methanation activity and high CH4 selectivity at low temperatures, International Journal of Hydrogen Energy, Vol. 37, p. 5527-5531.
25. H. Liu, X. Zou, X. Wang, X. Lu, W. Ding, 2012, Effect of CeO2 addition on Ni/Al2O3 catalysts for methanation of carbon dioxide with hydrogen, Journal of Natural Gas Chemistry, Vol. 21, p. 703-707.
26. J. Gao, Y. Wang, Y. Ping, D. Hu, G. Xu, F. Gu, F. Su, 2012, A thermodynamic analysis of methanation reactions of carbon oxides for the production of synthetic natural gas, An international journal to further the chemical sciences, Vol. 2, p. 2359-2368.
27. G. D. Lee, M. J. Moon, J. H. Park, S. S. Park, S. S. Hong, 2005, Raney Ni Catalysts Derived from Different Alloy Precursors Part II. CO and CO2 Methanation Activity, Korean Journal of Chemical Engineering, Vol. 22, p. 541-546.
28. J. B. Wang, P. M. Chen, T. J. Huang, 2001, Carbon Dioxide Methanation over Yttria-doped Ceria/γ-Alumina Supported Nickel Catalyst, Journal of Chemical Engineering, Vol. 32. P. 303-310.
29. Hwang, H.T., Harale, A., Liu, P.K.T., Sahimia, M., Tsotsis, T.T., 2008. A membrane based reactive separation system for CO2 removal in a life support system. J. Membr. Sci. 315 (2008), 116-124.
30. R.Y. Chein, W.Y. Chen, C.T. Yu, 2016, Numerical simulation of carbon dioxide methanation reaction for synthetic natural gas production in fixed-bed reactors. Journal of Natural Gas Science and Engineering 29 (2016) P.243-251
31. 謝宗龍, 〈成本太高 潔淨煤炭發電夢一場〉, 《中時電子報》,
2017年7月2日, 科技
32. M. Phanikumar, R. Mahajan, “Non-Darcy natural convection in high porosity metal Foams,” Int. J. Heat Mass Transfer 2002; 45:3781-93
33. Francesconi JA, Mussati MC, Aguirre PA, “Analysis of design variables for water–gas-shift reactors by model-based optimization,” J Power Sources 2007;173:467–77.
34. C. Borgnakke, R. E. Sonntag, 2009, Fundamentals of Thermodynamics, 7nd ed., Wiley & Sons, Inc.
35. R. B. Bird, W. E. Stewart, and E. N. Lightfoot, 2002, ansport Phenomena, 2nd ed., New York: John Wiley & Sons.
36. Incropera, F. P., Dewitt,D. P., Bergmann, T.L., Lavine, A.S., 2007, Fundamentals of Heat and Mass Transfer,6th ed.