研究生: |
江欣達 Hsin-da, Chiang |
---|---|
論文名稱: |
電感耦合式電漿蝕刻氮化鎵/氮化銦鎵發光二極體之研究 A Study of Inductively Coupled Plasma Etch of GaN/InGaN Based Light Emitting Diodes |
指導教授: | 蔡春鴻 |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 77 |
中文關鍵詞: | 電感耦合式電漿蝕刻機台 、氮化鎵 、發光二極體 、電漿蝕刻 、實驗設計方法 |
外文關鍵詞: | ICP, GaN, LED, Plasma Etch, DOE |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文研究使用田口式直交表矩陣實驗設計(Design of Experiments)來探討氮化鎵/氮化銦鎵(GaN/InGaN)量子井藍光二極體以電感式藕合式高密度電漿(Inductive Coupled Plasma)蝕刻機,製程氣體為Cl2/BCl3,的電漿蝕刻中機台參數(instrumental parameters):電漿功率(ICP Power)、偏壓功率(RF Bias Power)、製程腔壓力(Chamber Pressure)和BCl3佔混合氣體的百分比,對蝕刻結果的影響,利用表面輪廓分析儀量測(surface profiler)量測蝕刻速率(etch rate)、原子力顯微鏡(AFM)量測蝕刻面粗糙度(surface roughness)、掃描式電子顯微鏡(SEM)觀察蝕刻側壁的形貌(side wall morphology)及對二氧化矽(SiO2 mask)的蝕刻選擇比(selectivity)。並比較以不同磊晶方式(MOCVD & MBE)所成長的GaN薄膜,在使用電漿蝕刻之後,蝕刻表面的粗糙度隨機台參數變化情形。
Group III-Nitride semiconductors are of considerable interest because of their potential for optoelectronic applications such as light-emitting diodes(LEDs) and laser diodes (LDs)in the visible light regions. The dry etching process is one of the critical steps in the fabrication of nitride-based LEDs.
A study based on Taguchi experimental design was carried out to investigate the etch characteristics of GaN/InGaN quantum well light emitting diodes using a high density inductively coupled plasma of BCl3/Cl2-based chemistry. The process parameters studied include inductive power, bias power, BCl3/Cl2 gas ratio and chamber pressure. The etch characteristics measured were etch rate, surface roughness, side-wall angle and etch selectivity to SiO2 mask.
It was found that the variations in the bias power had maximum effect on the etch rate whereas the pressure affected etch rate the least. Anisotropic profiles were generally achieved over a wide range of parameters with low substrate bias. Certain interesting phenomena such as “grass” and sidewall striations were observed. Nearly smooth etched surface were observed for most etch conditions. The etch mechanisms of different etch conditions on both GaN grown by MBE and MOCVD and the differences of surface roughness before and after etching will also be discussed.
【1】S. J. Pearton and R. J. Shul, in Gallium Nitride I, edited by J. I. Pankove and T. D.Moustakas Academic
,San Diego,1998
【2】P. Gillis, D. A. Choutov, P. A. Steiner, J. D. Piper, J. H. Crouch, P. M. Dove, and K. P. Martin, Appl. Phys. Lett. 66, 2475,1995
【3】R. J. Shul, in Processing of Wide Bandgap Semiconductors, edited by S. J. Pearton ,Noyes, Park Ridge, NJ, 1999
【4】I. Adesida, A. Mahajan, E. Andideh, M. Asif Khan, D. T. Olsen, and J. N. Kuznia, Appl. Phys. Lett. 63,
2777,1993
【5】I. Adesida, A. T. Ping, C. Youtsey, T. Sow, M. Asif Khan, D. T. Olson, and J. N. Kuznia, Appl. Phys. Lett. 65, 889,1994
【6】O. Aktas, Z. Fan, S. N. Mohammad, A. Botcharev, and H. Morkoc, Appl. Phys. Lett. 69, 25,1996
【7】M. A. Khan, Q. Chen, M. S. Shur, B. T. McDermott, J. A. Higgins, J. Burm, W. Schaff, and L. F. Eastman, Electron. Lett. 32, 357,1996
【8】Y. F. Wu, S. Keller, P. Kozodoy, B. P. Keller, P. Parikh, D. Kapolnek, S. P. DenBaars, and V. K. Mishra, IEEE Electron Device Lett. 18, 290,1997
【9】M. A. Khan, J. N. Kuznia, M. S. Shur, C. Eppens, J. Burm, and W. Schaff, Appl. Phys. Lett. 66, 1083 ,1995,Bridges, S. J. Pearton, J. W. Lee, and L. F. Lester, Mater. Res. Soc. Symp. Proc. 512, 487,1998
【10】W. A. Harrison, Electronic Structure and Properties of Solids ,Freeman, San Francisco, 1980
【11】S. J. Pearton, C. R. Abernathy, F. Ren, and J. R. Lothian, J. Appl. Phys. 76, 1210,1994
【12】M. E. Lin, Z. F. Zan, Z. Ma, L. H. Allen, and H. Morkoc, Appl. Phys. Lett. 64, 887,1994
【13】A. T. Ping, I. Adesida, M. Asif Khan, and J. N. Kuznia, Electron. Lett. 30, 1895,1994
【14】H. Lee, D. B. Oberman, and J. S. Harris, Jr., Appl. Phys. Lett. 67, 1754,1995
【15】S. J. Pearton, C. R. Abernathy, F. Ren, J. R. Lothian, P. W. Wisk, A. Katz, and C. Constantine, Semicond. Sci. Technol. 8, 310,1993
【16】S. J. Pearton, C. R. Abernathy, and F. Ren, Appl. Phys. Lett. 64, 2294,1994
【17】S. J. Pearton, C. R. Abernathy, and F. Ren, Appl. Phys. Lett. 64, 3643,1994
【18】R. J. Shul, S. P. Kilcoyne, M. Hagerott Crawford, J. E. Parmeter, C. B. Vartuli, C. R. Abernathy, and S. J.
Pearton, Appl. Phys. Lett. 66, 1761,1995
【19】 C. B. Vartuli, J. D. MacKenzie, J. W. Lee, C. R. Abernathy, S. J. Pearton, and R. J. Shul, J. Appl. Phys. 80, 3705,1996
【20】L. Zhang, J. Ramer, K. Zheng, L. F. Lester, and S. D. Hersee, Mater. Res. Soc. Symp. Proc. 395, 763 1996
【21】L. Zhang, J. Ramer, J. Brown, K. Zheng, L. F. Lester, and S. D. Hersee, Appl. Phys. Lett. 68, 367,1996
【22】B. Humphreys and M. Govett, MRS Internet J. Nitride Semicond. Res. 1, 6,1996
【23】J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, F. Ren, and P. F. Sciortino, J. Electron. Mater. 26, 290,1997
【24】C. B. Vartuli, S. J. Pearton, J. W. Lee, J. Hong, J. D. MacKenzie, C. R. Abernathy, and R. J. Shul, Appl. Phys. Lett. 69, 1426,1996
【25】R. J. Shul, A. J. Howard, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, P. A. Barnes, and M. J. Bozack, J. Vac. Sci. Technol. B 13, 2016,1995
【26】C. B. Vartuli, S. J. Pearton, C. R. Abernathy, R. J. Shul, A. J. Howard, S. P. Kilcoyne, J. E. Parmeter, and M. Hagerott Crawford, J. Vac. Sci.Technol. A 14, 1011,1996
【27】R. J. Shul, C. I. H. Ashby, D. J. Rieger, A. J. Howard, S. J. Pearton, C. R. Abernathy, C. B. Vartuli, and P. A. Barnes, Mater. Res. Soc. Symp. Proc. 395, 751,1996
【28】R. J. Shul, in GaN and Related Materials, edited by S. J. Pearton ~Gordon and Breach, The Netherlands, 1997
【29】R. J. Shul, G. B. McClellan, S. J. Pearton, C. R. Abernathy, C. Constantine, and C. Barratt, Electron. Lett. 32, 1408,1996
【30】R. J. Shul, G. B. McClellan, S. A. Casalnuovo, D. J. Rieger, S. J. Pearton, C. Constantine, C. Barratt, R. F. Karlicek, Jr., C. Tran, and M. Schurman, Appl. Phys. Lett. 69, 1119,1996
【31】Y. H. Lee, H. S. Kim, G. Y. Yeom, J. W. Lee, M. C. Yoo, and T. I. Kim, J. Vac. Sci. Technol. A 16, 1478,1998
【32】H. S. Kim, Y. H. Lee, G. Y. Yeom, J. W. Lee, and T. I. Kim, Mater. Sci. Eng., B 50, 82,1997
【33】Y. B. Hahn, D. C. Hays, S. M. Donovan, C. R. Abernathy, J. Han, R. J. Shul, H. Cho, K. B. Jung, and S. J. Pearton, J. Vac. Sci. Technol. A submitted
【34】H. Cho, C. B. Vartuli, S. M. Donovan, J. D. MacKenzie, C. R. Abernathy, S. J. Pearton, R. J. Shul, and C. Constantine, J. Electron. Mater. 27, 166,1998
【35】H. Cho, C. B. Vartuli, S. M. Donovan, C. R. Abernathy, S. J. Pearton, R. J. Shul, and C. Constantine, J. Vac. Sci. Technol. A 6, 1631,1998
【36】J. W. Lee, H.隨著積體電路製程技術進步,積體電路元件密集度大幅增加,電子元件尺寸越作越小,這使得電流密度逐漸增大,和產生局部的電流壅塞現象,此皆會對元件的可靠度造成不利的影響。本實驗擬藉由氫電漿的表面處理來調整銅/鉭間的接觸電阻,並利用電腦的模擬來分析銅/鉭的接觸電阻對電流壅塞的影響,
本實驗利用黃光微影製程製備試片,來探討銅/鉭接觸電阻受表面處理、電流和溫度的影響。首先利用Kelvin測試結構量測接觸電阻,接點尺寸由20×20μm2到4×4μm2。研究發現表面處理對銅/鉭間的接觸電阻有很直接的影響,表面處理可明顯的降低接觸電阻。此外接觸電阻亦會受到電流和溫度的影響,當電流越大或溫度越高時接觸電阻會有下降的趨勢。
在模擬方面,使用模擬軟體FlexPDE來分析在Blech結構中接觸電阻對電流分佈的影響。模擬結果顯示,接觸電阻的存在的確會改變電流的分佈,當接觸電阻越大,則銅膜所能達到的最大電流密度會越小,且銅導線內的電流壅塞效應越不明顯。