研究生: |
黃聖博 Huang, Sheng-Bo |
---|---|
論文名稱: |
微調聚脯胺酸螺旋三角骨架與其影響 Adjustment of Polyproline Tri-Helix Macrocycle Scaffold and its Effects |
指導教授: |
王聖凱
Wang, Sheng-Kai |
口試委員: |
洪嘉呈
Horng, Jia-Cherng 許銘華 Hsu, Ming-Hua |
學位類別: |
碩士 Master |
系所名稱: |
理學院 - 化學系 Department of Chemistry |
論文出版年: | 2019 |
畢業學年度: | 108 |
語文別: | 中文 |
論文頁數: | 95 |
中文關鍵詞: | 脯胺酸 、脯胺酸多肽 、骨架 |
外文關鍵詞: | polyproline, tri-helix macrocycle, scaffold |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本實驗室先前已經成功利用脯胺酸多肽作為骨架,合成出脯胺酸螺旋三聚環分子。利用脯胺酸多肽剛性結構的特性,在指定的脯胺酸上修飾醣配基,可以調控醣配基之間的距離。先前的研究中,已經利用上述的脯胺酸螺旋三聚環設計出對HPA有高度選擇性的分子。然而,對於脯胺酸三聚環分子性質仍然有不明瞭的部分。我們想知道在三聚環分子中,脯胺酸多肽是否能夠旋轉,進而導致醣配基方向受到影響。另外,我們也想討論不同長度的脯胺酸多肽對於三聚環分子的穩定性有何影響。本論文第一部分中,我們嘗試以先前脯胺酸螺旋三聚環分子為基礎,在同一種骨架但是不同的位置脯胺酸接上N-乙醯半乳糖胺,最後再利用表面電漿共振(SPR)測試比較各種不同位置醣配基對HPA的結合能力影響,顯示脯胺酸多肽在環狀骨架中的性質。而第二部分中,我們設計出不同長度的脯胺酸多肽,合成出大小不同的脯胺酸螺旋三聚環分子,與先前研究中的脯胺酸螺旋三聚環分子做圓二色性分析比較,顯示不同長度的脯胺酸多肽所組成的脯胺酸螺旋三聚環分子的穩定性。
Our group has previously used polyproline as a scaffold to synthesize polyproline tri-helix macrocycle. By utilizing the the rigid structure of the polyproline, conjugation of the glycan ligand on the specific proline residues allows controlling the distance between the glycan ligands. Polyproline tri-helix macrocycle has previously been used to build a selective macromolecule to HPA. However, it is still unclear about the molecular nature of the polyproline tri-helix macrocycle. It is essential to know whether the polyproline helix can rotate in the polyproline tri-helix macrocycle, which leads to the orientation of the glycan ligands. In addition, we also investigated how the length of polyproline helix affects on the stability of polyproline tri-helix macrocycle. In the first part of this thesis, we attached N-acetylgalactosamine to different positions of the same polyproline tri-helix scaffold. Surface plasma resonance (SPR) analysis was used to compare the effects of different position of the sugar ligands by the binding avidity of HPA. The results indicate the polyproline properties in the polyproline tri-helix macrocycle. In the second part, we designed polyproline tri-helix macrocycles assembled with different lengths of polyproline helix in order to compare with the compound from previous studies by Circle Dichroism (CD). The results show that the stability of the polyproline tri-helix macrocycle composed of different lengths of polyproline.
1.Diggle, S. P.; Stacey, R. E.; Dodd, C.; Cámara, M.; Williams, P.; Winzer, K., The galactophilic lectin, LecA, contributes to biofilm development in Pseudomonas aeruginosa. Environ. Microbiol. 2006, 8 (6), 1095-1104.
2.Geijtenbeek, T. B. H.; Kwon, D. S.; Torensma, R.; van Vliet, S. J.; van Duijnhoven, G. C. F.; Middel, J.; Cornelissen, I. L. M. H. A.; Nottet, H. S. L. M.; KewalRamani, V. N.; Littman, D. R.; Figdor, C. G.; van Kooyk, Y., DC-SIGN, a Dendritic Cell–Specific HIV-1-Binding Protein that Enhances trans-Infection of T Cells. Cell 2000, 100 (5), 587-597.
3.Kusters, J. G.; van Vliet, A. H. M.; Kuipers, E. J., Pathogenesis of Helicobacter pylori infection. Clin. Microbiol. Rev. 2006, 19 (3), 449-490.
4.Park, S.; Kim, G.-H.; Park, S.-H.; Pai, J.; Rathwell, D.; Park, J.-Y.; Kang, Y.-S.; Shin, I., Probing Cell-Surface Carbohydrate Binding Proteins with Dual-Modal Glycan-Conjugated Nanoparticles. J. Am. Chem. Soc. 2015, 137 (18), 5961-5968.
5. Weis, W. I.; Drickamer, K., Structural basis of lectin-carbohydrate recognition. Annu. Rev. Biochem 1996, 65 (1), 441-473.
6.Chemani, C.; Imberty, A.; de Bentzmann, S.; Pierre, M.; Wimmerová, M.; Guery, B. P.; Faure, K., Role of LecA and LecB Lectins in <em>Pseudomonas aeruginosa</em>-Induced Lung Injury and Effect of Carbohydrate Ligands. Infect. Immun. 2009, 77 (5), 2065.
7.Ting, S. S.; Chen, G.; Stenzel, M. H., Synthesis of glycopolymers and their multivalent recognitions with lectins. Polym. Chem. 2010, 1 (9), 1392-1412.
8.Leffler, H.; Carlsson, S.; Hedlund, M.; Qian, Y.; Poirier, F., Introduction to galectins. Glycoconjugate J. 2002, 19 (7-9), 433-440.
9.Nizet, V.; Varki, A.; Aebi, M., Microbial lectins: hemagglutinins, adhesins, and toxins. In Essentials of Glycobiology [Internet]. 3rd edition, Cold Spring Harbor Laboratory Press: 2017.
10.Sanchez, J.-F.; Lescar, J.; Chazalet, V.; Audfray, A.; Gagnon, J.; Alvarez, R.; Breton, C.; Imberty, A.; Mitchell, E. P., Biochemical and Structural Analysis of Helix pomatia Agglutinin: A Hexameric Lectin with a Novel Fold. J. Biol. Chem. 2006, 281 (29), 20171-20180.
11.Brooks, S. A., The involvement of Helix pomatia lectin (HPA) binding N-acetylgalactosamine glycans in cancer progression. Histol. Histopathol. 2000, 15 (1), 143-158.
12.(a) Schumacher, U.; Higgs, D.; Loizidou, M.; Pickering, R.; Leathem, A.; Taylor, I., Helix pomatia agglutinin binding is a useful prognostic indicator in colorectal carcinoma. Cancer 1994, 74 (12), 3104-3107; (b) Kakeji, Y.; Tsujitani, S.; Mori, M.; Maehara, Y.; Sugimachi, K., Helix pomatia agglutinin binding activity is a predictor of survival time for patients with gastric carcinoma. Cancer 1991, 68 (11), 2438-2442.
13. Saint-Guirons, J.; Zeqiraj, E.; Schumacher, U.; Greenwell, P.; Dwek, M., Proteome analysis of metastatic colorectal cancer cells recognized by the lectin Helix pomatia agglutinin (HPA). Proteomics 2007, 7 (22), 4082-4089.
14.Mammen, M.; Choi, S. K.; Whitesides, G. M., Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Ed. 1998, 37 (20), 2754-2794.
15.Krishnamurthy, V. M.; Estroff, L. A.; Whitesides, G. M., Multivalency in ligand design. Fragment-based approaches in drug discovery 2006, 34, 11-53.
16.Kitov, P. I.; Bundle, D. R., On the nature of the multivalency effect: a thermodynamic model. J. Am. Chem. Soc. 2003, 125 (52), 16271-16284.
17.Cecioni, S.; Imberty, A.; Vidal, S., Glycomimetics versus multivalent glycoconjugates for the design of high affinity lectin ligands. Chem. Rev. 2014, 115 (1), 525-561.
18.Wittmann, V.; Pieters, R. J., Bridging lectin binding sites by multivalent carbohydrates. Chem. Soc. Rev. 2013, 42 (10), 4492-4503.
19.Bhatia, S.; Camacho, L. C.; Haag, R., Pathogen inhibition by multivalent ligand architectures. J. Am. Chem. Soc. 2016, 138 (28), 8654-8666.
20.Papp, I.; Sieben, C.; Sisson, A. L.; Kostka, J.; Böttcher, C.; Ludwig, K.; Herrmann, A.; Haag, R., Inhibition of Influenza Virus Activity by Multivalent Glycoarchitectures with Matched Sizes. ChemBioChem 2011, 12 (6), 887-895.
21.Dernedde, J.; Rausch, A.; Weinhart, M.; Enders, S.; Tauber, R.; Licha, K.; Schirner, M.; Zügel, U.; von Bonin, A.; Haag, R., Dendritic polyglycerol sulfates as multivalent inhibitors of inflammation. Proceedings of the National Academy of Sciences 2010, 107 (46), 19679-19684.
22.Sigal, G. B.; Mammen, M.; Dahmann, G.; Whitesides, G. M., Polyacrylamides Bearing Pendant α-Sialoside Groups Strongly Inhibit Agglutination of Erythrocytes by Influenza Virus: The Strong Inhibition Reflects Enhanced Binding through Cooperative Polyvalent Interactions. J. Am. Chem. Soc. 1996, 118 (16), 3789-3800.
23. Qi, Z.; Bharate, P.; Lai, C.-H.; Ziem, B.; Böttcher, C.; Schulz, A.; Beckert, F.; Hatting, B.; Mülhaupt, R.; Seeberger, P. H.; Haag, R., Multivalency at Interfaces: Supramolecular Carbohydrate-Functionalized Graphene Derivatives for Bacterial Capture, Release, and Disinfection. Nano Lett. 2015, 15 (9), 6051-6057.
24.Ruggiero, M. T.; Sibik, J.; Orlando, R.; Zeitler, J. A.; Korter, T. M., Measuring the Elasticity of Poly‐l‐Proline Helices with Terahertz Spectroscopy. Angew. Chem. Int. Ed. 2016, 55 (24), 6877-6881.
25.Wilhelm, P.; Lewandowski, B.; Trapp, N.; Wennemers, H., A crystal structure of an oligoproline PPII-helix, at last. J. Am. Chem. Soc. 2014, 136 (45), 15829-15832.
26.Sethi, A. A.; Stonik, J. A.; Thomas, F.; Demosky, S. J.; Amar, M.; Neufeld, E.; Brewer, H. B.; Davidson, W. S.; D'Souza, W.; Sviridov, D., Asymmetry in the Lipid Affinity of Bihelical Amphipathic Peptides a Structural Determinant for The Specificity of Abca1-Dependent Cholesterol Efflux by Peptides. J. Biol. Chem. 2008, 283 (47), 32273-32282.
27.Sviridov, D. O.; Drake, S. K.; Freeman, L. A.; Remaley, A. T., Amphipathic polyproline peptides stimulate cholesterol efflux by the ABCA1 transporter. Biochem. Biophys. Res. Commun. 2016, 471 (4), 560-565.
28. Hung, P.-Y.; Chen, Y.-H.; Huang, K.-Y.; Yu, C.-C.; Horng, J.-C., Design of polyproline-based catalysts for ester hydrolysis. ACS Omega 2017, 2 (9), 5574-5581.
29. Huang, S.-F.; Lin, C.-H.; Lai, Y.-T.; Tsai, C.-L.; Cheng, T.-J. R.; Wang, S.-K., Development of Pseudomonas aeruginosa Lectin LecA Inhibitor by using Bivalent Galactosides Supported on Polyproline Peptide Scaffolds. Chem. - Asian J. 2018, 13 (6), 686-700.
30.Weinberger, S. R.; Morris, T. S.; Pawlak, M., Recent trends in protein biochip technology. Pharmacogenomics 2000, 1 (4), 395-416.
31.Greenfield, N. J., Using circular dichroism spectra to estimate protein secondary structure. Nat. Protoc. 2006, 1 (6), 2876-2890.
32.Merrifield, R. B., Solid Phase Peptide Synthesis. I. The Synthesis of a Tetrapeptide. J. Am. Chem. Soc. 1963, 85 (14), 2149-2154.
33.Lin, C. H.; Wen, H. C.; Chiang, C. C.; Huang, J. S.; Chen, Y.; Wang, S. K., Polyproline Tri‐Helix Macrocycles as Nanosized Scaffolds to Control Ligand Patterns for Selective Protein Oligomer Interactions. Small 2019, 1900561.