研究生: |
陳滰娗 Chen, Jing-Ting |
---|---|
論文名稱: |
藉由蛋白質體學分析人類肺腺癌細胞中對艾瑞莎的抗藥性 Proteomics analysis of proteins responsible for the development of gefitinib resistance in human lung adenocarcinoma |
指導教授: |
詹鴻霖
Chan, Hong-Lin 周秀專 Chou, Hsiu-Chuan |
口試委員: |
王浩文
Wang, Hao-Wen |
學位類別: |
碩士 Master |
系所名稱: |
生命科學暨醫學院 - 生物資訊與結構生物研究所 Institute of Bioinformatics and Structural Biology |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 英文 |
論文頁數: | 79 |
中文關鍵詞: | 肺腺癌 、艾瑞莎 、蛋白質體學 |
外文關鍵詞: | lung adenocarcinoma, Gefitinib, Proteomics |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
肺癌位居全球癌症死亡之首。而在肺癌中以非小細胞肺癌為大宗,占約85%的所有肺癌病例。Gefitinib (Iressa,艾瑞莎) 為表皮生長因子受體之酪氨酸激酶的抑制劑,治療帶有表皮生長因子受體突變的非小細胞肺癌病患,為第一線用藥,並且在臨床上展現極好的治療成果。然而在艾瑞莎12到18個月治療後,大多數的病患由於抗藥性的產生而導致治癒效果差,因此探討艾瑞莎治療下產生的抗藥性分子機制以及尋找抗藥性生物標誌是極為迫切的。在本研究中,我們培養了人類肺腺癌細胞株PC9和具有艾瑞莎抗藥性的細胞株PC9/Gef來研究這兩株細胞株中抗藥性機制和差異蛋白質表現量的調節。我們使用了離氨酸標定的二維差異電泳結合基質輔助雷射脫附游離飛行式質譜儀 (MALDI-TOF MS) 分析這兩株細胞中的蛋白質表現並鑑定出具有表現量差異的蛋白質。結果顯示,具有抗藥性的細胞株相對於敏感性的細胞株有47個蛋白質具有明顯表現量的差異。而這些有明顯表現差異並具有潛力的蛋白質將由免疫點墨法來驗證。在進一步的實驗中,我們選擇兩個在抗藥性細胞株中有明顯表現差異的蛋白質,分別是PCNT和mPR。分別使用RNA干擾的技術將這兩個蛋白各自進行基因沉默,並藉由這技術來看PCNT和mPR兩個蛋白質在進行完基因沉默後的影響,是否影響抗藥性細胞株的細胞存活能力以及是否影響抗藥性細胞凋亡的能力,並從中觀察這兩個蛋白質在抗藥性機制中所扮演的角色。總結來說,本實驗利用肺腺癌細胞為基礎的蛋白質體學的研究並鑑定到許多有明顯的蛋白質表現量變化,並期望這些蛋白質可以在未來能作為對艾瑞莎有抗藥性的肺腺癌病患的診斷標記以及治療上的標靶物。
Lung cancer is the leading cause of cancer-related mortality worldwide. Non-small cell lung cancer (NSCLC) accounts for nearly 85% of all lung cancer cases. In patients with NSCLC whose tumors harbor epidermal growth factor receptor (EGFR) activating mutation, gefitinib is the first-line treatment. However, most patients ultimately obtain drug resistance after 12–18 months treatment. Hence, it is urgent need to investigate the drug resistant mechanism and biomarker. In this study, we used a pair of lung adenocarcinoma cell lines, PC9, and the gefitinib resistant PC9/Gef as a model system to examine resistant mechanism and to identify potential therapeutic targets. We used two-dimensional differential gel electrophoresis (2D-DIGE) and matrix‐assisted laser desorption ionization time‐of‐flight mass spectrometry (MALDI-TOF/TOF MS) to examine the global protein expression changes between PC9 and gefitinib resistant PC9/Gef. A proteomic study revealed that resistant properties altered the expression of 47 proteins in PC9/Gef cells comparing to PC9 cells. Many potential proteins have been validated by western blotting. Further studies have used RNA interference, cell viability analysis, and analysis of apoptosis against progesterone receptor membrane component 1 (mPR) and Pericentrin (PCNT) proteins, to monitor and evaluate their potency and mechanism in resistance. The proteomic approach allowed us to identify numerous proteins, including PCNT, involved in drug resistance mechanism. Our results provide useful diagnostic markers and therapeutic candidates for the treatment of gefitinib-resistant lung adenocarcinoma.
1 Jemal, A. et al. Global cancer statistics. CA. Cancer J. Clin. 61, 69-90, doi:10.3322/caac.20107 (2011).
2 Chien, C. R. & Chen, T. H. A Bayesian model for age, period, and cohort effects on mortality trends for lung cancer, in association with gender-specific incidence and case-fatality rates. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 4, 167-171, doi:10.1097/JTO.0b013e318194fabc (2009).
3 Gower, A., Wang, Y. & Giaccone, G. Oncogenic drivers, targeted therapies, and acquired resistance in non-small-cell lung cancer. J Mol Med (Berl), doi:10.1007/s00109-014-1165-y (2014).
4 Huang, C. P. et al. ALDH-positive lung cancer stem cells confer resistance to epidermal growth factor receptor tyrosine kinase inhibitors. Cancer Lett. 328, 144-151, doi:10.1016/j.canlet.2012.08.021 (2013).
5 Lynch, T. J. et al. Activating mutations in the epidermal growth factor receptor underlying responsiveness of non-small-cell lung cancer to gefitinib. N. Engl. J. Med. 350, 2129-2139, doi:10.1056/NEJMoa040938 (2004).
6 Sun, S., Schiller, J. H. & Gazdar, A. F. Lung cancer in never smokers--a different disease. Nature reviews. Cancer 7, 778-790, doi:10.1038/nrc2190 (2007).
7 Thun, M. J. et al. Lung cancer death rates in lifelong nonsmokers. J. Natl. Cancer Inst. 98, 691-699, doi:10.1093/jnci/djj187 (2006).
8 Powrozek, T. et al. EGFR gene mutations in patients with adenosquamous lung carcinoma. Asia-Pacific journal of clinical oncology, doi:10.1111/ajco.12177 (2014).
9 Hsiung, C. A. et al. The 5p15.33 locus is associated with risk of lung adenocarcinoma in never-smoking females in Asia. PLoS Genet 6, doi:10.1371/journal.pgen.1001051 (2010).
10 Saikia, B. J., Phukan, R. K., Sharma, S. K., Sekhon, G. S. & Mahanta, J. Interaction of XRCC1 and XPD gene polymorphisms with lifestyle and environmental factors regarding susceptibility to lung cancer in a high incidence population in North East India. Asian Pacific journal of cancer prevention : APJCP 15, 1993-1999 (2014).
11 Shen, L. et al. Single Nucleotide Polymorphism in ATM Gene, Cooking Oil Fumes and Lung Adenocarcinoma Susceptibility in Chinese Female Non-Smokers: A Case-Control Study. PloS one 9, e96911, doi:10.1371/journal.pone.0096911 (2014).
12 Kim, C. H. et al. Exposure to secondhand tobacco smoke and lung cancer by histological type: A pooled analysis of the International Lung Cancer Consortium (ILCCO). Int. J. Cancer, doi:10.1002/ijc.28835 (2014).
13 Lv, J., Zhang, W. & Xu, R. Investigation of radon and heavy metals in Xuanwei and Fuyuan, high lung cancer incidence areas in China. J. Environ. Health 76, 32-38 (2013).
14 Liu, C. C., Tsai, S. S., Chiu, H. F., Wu, T. N. & Yang, C. Y. Ambient exposure to criteria air pollutants and female lung cancer in Taiwan. Inhal. Toxicol. 20, 311-317, doi:10.1080/08958370701866107 (2008).
15 Breugelmans, O. et al. Lung cancer risk and past exposure to emissions from a large steel plant. Journal of environmental and public health 2013, 684035, doi:10.1155/2013/684035 (2013).
16 Chetty, I. J. et al. Accounting for center-of-mass target motion using convolution methods in Monte Carlo-based dose calculations of the lung. Med. Phys. 31, 925-932 (2004).
17 da Cunha Santos, G., Shepherd, F. A. & Tsao, M. S. EGFR mutations and lung cancer. Annual review of pathology 6, 49-69, doi:10.1146/annurev-pathol-011110-130206 (2011).
18 Mitsudomi, T. & Yatabe, Y. Mutations of the epidermal growth factor receptor gene and related genes as determinants of epidermal growth factor receptor tyrosine kinase inhibitors sensitivity in lung cancer. Cancer Sci 98, 1817-1824, doi:10.1111/j.1349-7006.2007.00607.x (2007).
19 Meyers, M. B. et al. Increased epidermal growth factor receptor in multidrug-resistant human neuroblastoma cells. J. Cell. Biochem. 38, 87-97, doi:10.1002/jcb.240380203 (1988).
20 Sharma, S. V. & Settleman, J. ErbBs in lung cancer. Exp. Cell Res. 315, 557-571, doi:10.1016/j.yexcr.2008.07.026 (2009).
21 Rosell, R. et al. Screening for epidermal growth factor receptor mutations in lung cancer. N. Engl. J. Med. 361, 958-967, doi:10.1056/NEJMoa0904554 (2009).
22 Patel, M. R., Jay-Dixon, J., Sadiq, A. A., Jacobson, B. A. & Kratzke, R. A. Resistance to EGFR-TKI can be mediated through multiple signaling pathways converging upon cap-dependent translation in EGFR-wild type NSCLC. Journal of thoracic oncology : official publication of the International Association for the Study of Lung Cancer 8, 1142-1147, doi:10.1097/JTO.0b013e31829ce963 (2013).
23 Tokumo, M. et al. The relationship between epidermal growth factor receptor mutations and clinicopathologic features in non-small cell lung cancers. Clin. Cancer Res. 11, 1167-1173 (2005).
24 Giaccone, G. The role of gefitinib in lung cancer treatment. Clin. Cancer Res. 10, 4233s-4237s, doi:10.1158/1078-0432.CCR-040005 (2004).
25 Ansari, J., Palmer, D. H., Rea, D. W. & Hussain, S. A. Role of tyrosine kinase inhibitors in lung cancer. Anti-cancer agents in medicinal chemistry 9, 569-575 (2009).
26 Gridelli, C. et al. Gefitinib as first-line treatment for patients with advanced non-small-cell lung cancer with activating epidermal growth factor receptor mutation: Review of the evidence. Lung Cancer 71, 249-257, doi:10.1016/j.lungcan.2010.12.008 (2011).
27 O'Farrell, P. H. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250, 4007-4021 (1975).
28 Gorg, A., Drews, O., Luck, C., Weiland, F. & Weiss, W. 2-DE with IPGs. Electrophoresis 30 Suppl 1, S122-132, doi:10.1002/elps.200900051 (2009).
29 Gatenby, R. A. & Gillies, R. J. Why do cancers have high aerobic glycolysis? Nature reviews. Cancer 4, 891-899, doi:10.1038/nrc1478 (2004).
30 Salmena, L., Carracedo, A. & Pandolfi, P. P. Tenets of PTEN tumor suppression. Cell 133, 403-414, doi:10.1016/j.cell.2008.04.013 (2008).
31 Sugiyama, A. et al. Forced expression of antisense 14-3-3beta RNA suppresses tumor cell growth in vitro and in vivo. Carcinogenesis 24, 1549-1559, doi:10.1093/carcin/bgg113 (2003).
32 Nurse, P. Universal control mechanism regulating onset of M-phase. Nature 344, 503-508, doi:10.1038/344503a0 (1990).
33 Harada, K. & Ogden, G. R. An overview of the cell cycle arrest protein, p21(WAF1). Oral Oncol. 36, 3-7 (2000).
34 Peluso, J. J., Pappalardo, A., Losel, R. & Wehling, M. Progesterone membrane receptor component 1 expression in the immature rat ovary and its role in mediating progesterone's antiapoptotic action. Endocrinology 147, 3133-3140, doi:10.1210/en.2006-0114 (2006).
35 Crudden, G., Chitti, R. E. & Craven, R. J. Hpr6 (heme-1 domain protein) regulates the susceptibility of cancer cells to chemotherapeutic drugs. J. Pharmacol. Exp. Ther. 316, 448-455, doi:10.1124/jpet.105.094631 (2006).
36 Bokobza, S. M., Jiang, Y., Weber, A. M., Devery, A. M. & Ryan, A. J. Short-course treatment with gefitinib enhances curative potential of radiation therapy in a mouse model of human non-small cell lung cancer. Int. J. Radiat. Oncol. Biol. Phys. 88, 947-954, doi:10.1016/j.ijrobp.2013.12.038 (2014).
37 Ulivi, P. et al. Target therapy in NSCLC patients: Relevant clinical agents and tumour molecular characterisation. Molecular and clinical oncology 1, 575-581, doi:10.3892/mco.2013.100 (2013).
38 Hermeking, H. The 14-3-3 cancer connection. Nature reviews. Cancer 3, 931-943, doi:10.1038/nrc1230 (2003).
39 Li, N. et al. Overexpression of 14-3-3theta promotes tumor metastasis and indicates poor prognosis in breast carcinoma. Oncotarget 5, 249-257 (2014).
40 Morrison, D. K. The 14-3-3 proteins: integrators of diverse signaling cues that impact cell fate and cancer development. Trends Cell Biol. 19, 16-23, doi:10.1016/j.tcb.2008.10.003 (2009).
41 Ko, B. S. et al. Overexpression of 14-3-3epsilon predicts tumour metastasis and poor survival in hepatocellular carcinoma. Histopathology 58, 705-711, doi:10.1111/j.1365-2559.2011.03789.x (2011).
42 Yan, L. et al. RKIP and 14-3-3epsilon exert an opposite effect on human gastric cancer cells SGC7901 by regulating the ERK/MAPK pathway differently. Dig. Dis. Sci. 58, 389-396, doi:10.1007/s10620-012-2341-y (2013).
43 Osumi, N., Shinohara, H., Numayama-Tsuruta, K. & Maekawa, M. Concise review: Pax6 transcription factor contributes to both embryonic and adult neurogenesis as a multifunctional regulator. Stem Cells 26, 1663-1672, doi:10.1634/stemcells.2007-0884 (2008).
44 Muratovska, A., Zhou, C., He, S., Goodyer, P. & Eccles, M. R. Paired-Box genes are frequently expressed in cancer and often required for cancer cell survival. Oncogene 22, 7989-7997, doi:10.1038/sj.onc.1206766 (2003).
45 Zhao, X. et al. Downregulation of PAX6 by shRNA inhibits proliferation and cell cycle progression of human non-small cell lung cancer cell lines. PloS one 9, e85738, doi:10.1371/journal.pone.0085738 (2014).
46 Jo, M. et al. Anti-cancer effect of thiacremonone through down regulation of peroxiredoxin 6. PloS one 9, e91508, doi:10.1371/journal.pone.0091508 (2014).
47 Jo, M. et al. Lung tumor growth-promoting function of peroxiredoxin 6. Free Radic. Biol. Med. 61C, 453-463, doi:10.1016/j.freeradbiomed.2013.04.032 (2013).
48 Zhang, X. Z. et al. Triosephosphate isomerase and peroxiredoxin 6, two novel serum markers for human lung squamous cell carcinoma. Cancer Sci 100, 2396-2401, doi:10.1111/j.1349-7006.2009.01314.x (2009).
49 Kim, S. Y., Chun, E. & Lee, K. Y. Phospholipase A(2) of peroxiredoxin 6 has a critical role in tumor necrosis factor-induced apoptosis. Cell Death Differ. 18, 1573-1583, doi:10.1038/cdd.2011.21 (2011).
50 Lehtonen, S. T. et al. Peroxiredoxins, a novel protein family in lung cancer. Int. J. Cancer 111, 514-521, doi:10.1002/ijc.20294 (2004).
51 Lane, J., Martin, T. A., Watkins, G., Mansel, R. E. & Jiang, W. G. The expression and prognostic value of ROCK I and ROCK II and their role in human breast cancer. Int. J. Oncol. 33, 585-593 (2008).
52 Vigil, D. et al. ROCK1 and ROCK2 are required for non-small cell lung cancer anchorage-independent growth and invasion. Cancer Res. 72, 5338-5347, doi:10.1158/0008-5472.CAN-11-2373 (2012).
53 Zhao, Y. et al. Emerging metabolic targets in cancer therapy. Front Biosci (Landmark Ed) 16, 1844-1860 (2011).
54 O'Byrne, K. J. et al. Epigenetic regulation of glucose transporters in non-small cell lung cancer. Cancers 3, 1550-1565, doi:10.3390/cancers3021550 (2011).
55 He, G., Jiang, Y., Zhang, B. & Wu, G. The effect of HIF-1alpha on glucose metabolism, growth and apoptosis of pancreatic cancerous cells. Asia Pacific journal of clinical nutrition 23, 174-180, doi:10.6133/apjcn.2014.23.1.14 (2014).
56 Szczesna-Skorupa, E. & Kemper, B. Progesterone receptor membrane component 1 inhibits the activity of drug-metabolizing cytochromes P450 and binds to cytochrome P450 reductase. Mol. Pharmacol. 79, 340-350, doi:10.1124/mol.110.068478 (2011).
57 Hughes, A. L. et al. Dap1/PGRMC1 binds and regulates cytochrome P450 enzymes. Cell metabolism 5, 143-149, doi:10.1016/j.cmet.2006.12.009 (2007).
58 Crudden, G., Loesel, R. & Craven, R. J. Overexpression of the cytochrome p450 activator hpr6 (heme-1 domain protein/human progesterone receptor) in tumors. Tumour Biol. 26, 142-146, doi:10.1159/000086485 (2005).
59 Difilippantonio, S. et al. Gene expression profiles in human non-small and small-cell lung cancers. Eur. J. Cancer 39, 1936-1947 (2003).
60 Peluso, J. J., Liu, X., Saunders, M. M., Claffey, K. P. & Phoenix, K. Regulation of ovarian cancer cell viability and sensitivity to cisplatin by progesterone receptor membrane component-1. J. Clin. Endocrinol. Metab. 93, 1592-1599, doi:10.1210/jc.2007-2771 (2008).
61 Peluso, J. J., Yuan, A., Liu, X. & Lodde, V. Plasminogen activator inhibitor 1 RNA-binding protein interacts with progesterone receptor membrane component 1 to regulate progesterone's ability to maintain the viability of spontaneously immortalized granulosa cells and rat granulosa cells. Biol. Reprod. 88, 20, doi:10.1095/biolreprod.112.103036 (2013).
62 Rohe, H. J., Ahmed, I. S., Twist, K. E. & Craven, R. J. PGRMC1 (progesterone receptor membrane component 1): a targetable protein with multiple functions in steroid signaling, P450 activation and drug binding. Pharmacol. Ther. 121, 14-19, doi:10.1016/j.pharmthera.2008.09.006 (2009).
63 Neubauer, H. et al. Breast cancer proteomics reveals correlation between estrogen receptor status and differential phosphorylation of PGRMC1. Breast cancer research : BCR 10, R85, doi:10.1186/bcr2155 (2008).
64 Ahmed, I. S., Rohe, H. J., Twist, K. E. & Craven, R. J. Pgrmc1 (progesterone receptor membrane component 1) associates with epidermal growth factor receptor and regulates erlotinib sensitivity. J. Biol. Chem. 285, 24775-24782, doi:10.1074/jbc.M110.134585 (2010).
65 Pujana, M. A. et al. Network modeling links breast cancer susceptibility and centrosome dysfunction. Nat. Genet. 39, 1338-1349, doi:10.1038/ng.2007.2 (2007).
66 Kramer, A., Neben, K. & Ho, A. D. Centrosome aberrations in hematological malignancies. Cell Biol. Int. 29, 375-383, doi:10.1016/j.cellbi.2005.03.004 (2005).
67 Nam, H. J., Chae, S., Jang, S. H., Cho, H. & Lee, J. H. The PI3K-Akt mediates oncogenic Met-induced centrosome amplification and chromosome instability. Carcinogenesis 31, 1531-1540, doi:10.1093/carcin/bgq133 (2010).