研究生: |
張鴻鈞 Chang, Hung-Chun |
---|---|
論文名稱: |
蓄電池供電開關式磁阻馬達驅動系統之開發 DEVELOPMENT OF BATTERY POWERED SWITCHED-RELUCTANCE MOTOR DRIVES |
指導教授: |
廖聰明
Liaw, Chang-Ming |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 電機工程學系 Department of Electrical Engineering |
論文出版年: | 2010 |
畢業學年度: | 98 |
語文別: | 英文 |
論文頁數: | 175 |
中文關鍵詞: | 蓄電池 、切換式整流器 、車上充電器 、換相前移 、數位信號處理器 、電動車 、前端轉換器 、再生煞車 、功因校正 、開關式磁阻馬達 、強健控制 、可變結構系統控制 、升壓 |
外文關鍵詞: | Battery, switch-mode rectifier, on-board charger, commutation instant shift, digital signal processor, electric vehicle, front-end converter, regenerative braking, power factor correction, switched-reluctance motor, robust control, variable-structure system control, voltage boosting |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本論文旨在開發具升壓及功因校正充電功能之蓄電池供電開關式磁阻馬達驅動系統。首先探究開關式磁阻馬達之基礎原理及一些關鍵事務。接著,建構一標準以數位信號處理器為基礎之蓄電池供電開關式磁阻馬達驅動系統,並實測評估其操作特性。
其次,為提升開關式磁阻馬達之高速驅動性能及整合功因校正充電功能於開關式磁阻馬達驅動系統中,開發一兩象限前端直流/直流功率轉換器。於馬達驅動模式下,此前端轉換器可操作為升壓轉換器,由蓄電池端建立良好可調及可升壓之直流鏈電壓,供給後接之開關式磁阻馬達驅動系統。當車輛於閒置時,應用驅動系統中之一些組成元件形成一降壓型切換式整流器為主之功因校正車上充電器。特定言之,馬達轉換器中之四個二極體及馬達之兩相繞組被安排形成橋式整流器及交流輸入濾波器。於控制方面,簡單之強健控制機構及可變結構系統控制機構分別用於功因校正充電器及開關式磁阻馬達驅動系統以獲得良好控制性能。
接著,開發一具更高整合度之蓄電池供電開關式磁阻馬達驅動系統。採用開關式磁阻馬達驅動系統之內嵌元件即可完整建構一車上降-升壓型功因校正充電器。比較前者,由於降-升壓型輸入輸出電壓轉換能力,可獲得較佳之入電電力品質。最後,使用市售三相智慧型功率模組建構一整合之開關式磁阻馬達驅動系統。由適當之佈置組接,可形成降壓型或降-升壓型功因校正充電器。兩種切換式整流器之額定推導及電路元件設計均有詳細說明。由一些模擬及實測結果評定所有建構之開關式磁阻馬達驅動系統及功因校正充電器之操控性能。
REFERENCES
A. Switched-Reluctance Motors
[1] T. J. E. Miller, Switched reluctance motors and their control, Clarendon Press, Oxford, 1993.
[2] R. Krishnan, Switched reluctance motor drives: modeling, simulation, analysis, design, and applications, New York: CRC Press, 2001.
[3] M. Zeraoulia, B. M. E. H. Benbouzid and D. Diallo, “Electric motor drive selection issues for HEV propulsion systems: a comparative study,” IEEE Trans. Veh. Technol., vol. 55, no. 6, pp. 1756-1764, January 2006.
[4] A. Labak and N. C. Kar, “A novel five-phase pancake shaped switched reluctance motor for hybrid electric vehicles,” in Proc. IEEE VPPC, 2009, pp. 494-499.
[5] N. Schofield, S. A. Long, D. Howe and M. McClelland, “Design of a switched reluctance machine for extended speed operation,” IEEE Trans. Ind. Appl., vol. 45, no. 1, pp. 116-122, 2009.
[6] A. Omekanda, B. Lequesne, H. Klode, S. Gopalakrishnan and I. Husain, “Switched reluctance and permanent magnet brushless motors in highly dynamic situations: a comparison in the context of electric brakes,” IEEE Mag. Ind. Appl., vol. 15, no. 4, pp. 35-43, 2009.
[7] N. Schofield and S. Long, “Generator operation of a switched reluctance starter/generator at extended speeds,” IEEE Trans. Veh. Technol., vol. 58, no. 1, pp. 48-56, 2008.
[8] J. Y. Lim, Y. C. Jung, S. Y. Kim and J. C. Kim, “Single phase switched reluctance motor for vacuum cleaner,” in Proc. IEEE ISIE, 2001, vol. 2, pp.1303-1400.
[9] Y. Kano, T. Kosaka and N. Matsui, “Optimum design approach for two-phase switched reluctance compressor drive,” in Proc. IEEE IEMDC, 2007, vol. 1, pp. 797- 804.
[10] G. L. Fronista and G. Bradbury, “An electromechanical actuator for a transport aircraft spoiler surface,” in Proc. IEEE IECEC, 1997, vol. 1, pp.694-698.
[11] A. V. Radun, “Design considerations for the switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 3, no. 5, pp. 1079-1087, 1995.
[12] T. J. E. Miller, “Optimal design of switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 15-27, 2002.
[13] S. Kachapornkul, P. Jitkreeyarn, P. Somsiri, K. Tungpimolrut, A. Chiba and T. Fukao, “A design of 15 kW switched reluctance motor for electric vehicle applications,” in Proc. IEEE ICEMS, 2007, pp.1690-1693.
[14] K. M. Rahman and S. E. Schulz, “Design of high efficiency and high density switched reluctance motor for vehicle propulsion,” in Proc. IEEE IAC, 2001, vol. 3, pp.2104-2110.
B. Switched-Reluctance Motor Converters
[15] S. Vukosavic and V. R. Stefanovic, “SRM inverter topologies: a comparative evaluation,” IEEE Trans. Ind. Appl., vol. 27, no. 6, pp. 1034-1049, 1991.
[16] K. Ha, C. Lee, J. Kim, R. Krishnan and S. G. Oh, “Design and development of low-cost and high-efficiency variable-speed drive system with switched reluctance motor,” IEEE Trans. Ind. Appl., vol. 43, no. 3, pp. 703-713, 2007.
[17] V. V. Deshpande and Y. L. Jun, “New converter configurations for switched reluctance motors wherein some windings operate on recovered energy,” IEEE Trans. Ind. Appl., vol. 38, no. 6, pp. 1558-1565, 2002.
[18] A. M. Hava, V. Blasko and T. A. Lipo, “A modified C-dump converter for variable reluctance machines,” IEEE Trans. Ind. Appl., vol. 28, no. 5, pp. 1017-1022, 1992.
[19] S. Bolognani, E. Ognibeni and M. Zigliotto, “Sliding mode control of the energy recovery chopper in a C-dump switched reluctance motor drive,” IEEE Trans. Ind. Appl., vol. 29, no.1, pp. 181-186, 1993.
[20] S. Mir, I. Husain and M.E. Elbuluk, “Energy-efficient C-dump converters for switched reluctance motors,” IEEE Trans. Power Electron., vol. 12, pp. 912-921, 1997.
[21] K. J. Tseng, S. Cao and J. Wang, “A new hybrid C-dump and buck-fronted converter for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 47, no. 6, pp. 1228-1236, 2000.
[22] Y. H. Yoon, S. H. Song, T. W. Lee, C. Y. Won and Y. R. Kim, “High performance switched reluctance motor drive for automobiles using C-dump converters,” in Proc. IEEE ISIE, 2004, pp. 969-974.
[23] M. Cacciato, A. Consoli, G. Scarcella and G. Scelba, “A switched reluctance motor drive for home appliances with high power factor capability,” in Proc. IEEE PESC, 2008, pp. 1235-1241.
[24] M. Barnes and C. Pollock, “Power converter for single phase switched reluctance motors,” Electron. Lett., vol. 31, no. 25, pp. 2137-2138, 1995.
[25] S. Chan, “Performance enhancement of single-phase switched reluctance motor by DC link voltage boosting,” IEE Proc. Elect. Power Applicat., 1993, vol. 140, no. 5, pp. 316-322.
[26] Y. G. Dessouky, B. W. Williams and J. E. Fletcher, “A novel power converter with voltage-boosting capacitors for a four-phase SRM drive,” IEEE Trans. Ind. Electron., vol. 45, no. 5, pp. 815-823, 1998.
[27] D. H. Lee, S. H. Seok and J. W. Ahn, “SR drive for hydraulic pump using a novel passive boost converter,” in Proc. IEEE ECCE, 2009, pp. 282-287.
[28] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
[29] K. I. Hwu and C. M. Liaw, “ DC-link voltage boosting and switching control for switched reluctance motor drives,” IEE Proc. Elect. Power Applicat., 2000, vol. 147, no. 5, pp. 337-344.
[30] J. Y. Chai, Development and control of a switched-reluctance motor drive with power factor correction front-end, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2008.
[31] Y. Murai, J. Cheng and M. Yoshida, “New soft-switched reluctance motor drive circuit,” in Proc. IEEE Ind. Appl., 1997, vol. 1, pp. 676-681.
[32] K. T. Chau, T. W. Ching, C. C. Chan and M. S. W. Chan, “A novel zero-current soft-switching converter for switched reluctance motor drives,” in Proc. IEEE IECON, 1998, vol. 2, pp. 893-898.
[33] C. K. Pan, A DSP-based soft-switching converter-fed switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2003.
[34] J. Luo and Q. Zhan, “A novel soft-switching converter for switched reluctance motor: analysis, design and experimental results,” in Proc. IEEE IEMDC, 2005, pp. 1955-1961.
[35] Y. H. Yoon, D. H. Ran, S. J. Kim, D. K. Kim and C. Y. Won “Current hysteresis controlled resonant C-dump converter for switched reluctance motor drive,” in Proc. IEEE PESC, 2004, pp. 1329-1334.
[36] FCAS50SN60 smart power module for SRM, www.fairchildsemi. com/ds/FC/FCAS50SN60.pdf
[37] FCAS20DN60BB smart power module for SRM, www.fairchildsemi. com/ds/FC/FCAS20DN60BB.pdf
[38] Y. C. Kim, Y. H. Yoon, B. K. Lee, J. Hur and C. Y. Won, “A new cost effective SRM drive using commercial 6-switch IGBT modules,” in Proc. IEEE PESC, 2006, pp. 1-7.
[39] Y. C. Kim, Y. H. Yoon, B. K. Lee, H. S. Kim and C. Y. Won, “Control algorithm for 4-switch converter of 3-phase SRM,” in Proc. PESC, 2006, pp. 1-5.
[40] A. C. Oliveira, C. B. Jacobina, A. M. N. Lima and F. Salvadori, “Startup and fault tolerance of the SRM drive with three-phase bridge inverter,” in Proc. IEEE PESC, 2005, pp. 714-719.
[41] H. Goto, H. J. Guo, O. Ichinokura, “A novel drive method for switched reluctance using three-phase power modules,” in Proc. EPE-PEMC, 2006, pp. 1027-1031.
[42] Z. Grbo, S Vukosavic and E. Levi, “A novel power inverter for switched reluctance motor drives,” Elec. Enger., vol. 18, no. 3, pp. 453-465, 2005.
[43] X. Liu and Z. Pan, “Study on switched reluctance motor using three-phase bridge inverter: Analysis and comparison with asymmetric bridge,” in Proc. ICEMS, 2008, pp. 1354-1358.
[44] J. Peng, Z. Deng, X. Chen, Z. Liu, X. Wang, Y. Wu and J. Cai, “Dynamic analysis of switched reluctance motor in two different control strategies based on three-phase bridge converter,” in Proc. ASEMD, 2009, pp. 255-258.
[45] X. Wang, H. Pan and C. Wang, “New power converter circuit of switch reluctance motor based on intelligent power module,” in Proc. CCDC, 2008, pp. 3757-3760.
C. Modeling and Dynamic Control
[46] N. J. Nagel and R. D. Lorenz, “Modeling of a saturated switched reluctance motor using an operating point analysis and the unsaturated torque equation,” IEEE Trans. Ind. Applicat., vol. 36, pp. 714-722, 2000.
[47] V. Vujicic and S.N. Vukosavic, “A simple nonlinear model of the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 15, no. 4, pp. 395-400, 2000.
[48] S. Liu, Z. Zhao, S. Meng and J. Chai, “A nonlinear analytical model for switched reluctance motor,” in Proc. IEEE Region 10 Conf. on Computers, Communications, Control and Power Engineering, 2002, vol. 3, pp. 2034-2037.
[49] B. P. Loop and S. D. Sudhoff, “Switched reluctance machine model using inverse inductance characterization,” IEEE Trans. Ind. Applicat., vol. 39, no. 3, pp. 743-751, 2003.
[50] D. N. Essah and S. D. Sudhoff, “An improved analytical model for the switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 349-356, 2003.
[51] L. Xu and E. Ruckstadter, “Direct modeling of switched reluctance machine by coupled field-circuit method,” IEEE Trans. Energy Convers., vol. 10, no. 3, pp. 446-454, 1995.
[52] S. Cao, and K. J. Tseng, “Evaluation of neighboring phase coupling effects of switched reluctance motor with dynamic modeling approach,” in Proc. Power Electronics and Motion Control Conf., 2000, vol. 2, pp. 881-886.
[53] B. C. Mecrow, C. Weiner and A. C. Clothier, “The modeling of switched reluctance machines with magnetically coupled windings,” IEEE Trans. Ind. Applicat., vol. 37, no. 6, pp. 1675-1683, 2001.
[54] F. R. Salmasi and B. Fahimi, “Modeling switched-reluctance machines by decomposition of double magnetic saliencies,” IEEE Trans. Magnetics, vol. 40, no. 3, pp. 1562-1572, 2004.
[55] O. Ichinokura, T. Onda, M. Kimura, T. Watanabe, T. Yanada and H. J. Guo, “Analysis of dynamic characteristics of switched reluctance motor based on SPICE,” IEEE Trans. Magnetics, vol. 34, pp. 2147-2149, 1998.
[56] X. Wang and J. S. Lai, “Small-signal modeling and control for PWM control of switched reluctance motor drives,” in Proc. IEEE PESC, 2002, vol. 2, no. 1, pp. 546-551.
[57] S. A. Hussain and I. Husain, “Modeling, simulation and control of switched reluctance motor drives,” in Proc. IEEE IECON’03, 2003, vol. 3, pp. 2447-2452.
[58] K. N. Srinivas and R. Arumugam, “Dynamic characterization of switched reluctance motor by computer-aided design and electromagnetic transient simulation,” IEEE Trans. Magnetics, vol. 39, no. 3, pp.1806-1812, 2003.
[59] A. D. Cheok and N. Ertugrul, “Use of fuzzy logic for modeling, estimation, and prediction in switched reluctance motor drives,” IEEE Trans. Ind. Electron., vol. 46, no. 6, pp. 1207-1224, 1999.
[60] S. K. Sahoo, Q. Zheng, S. K. Panda and J. X. Xu, “Model-based torque estimator for switched reluctance motors,” in Proc. PEDS, 2003, vol. 2, pp. 959-963.
[61] W. Lu, A. Keyhani and A. Fardoun, “Neural network-based modeling and parameter identification of switched reluctance motors,” IEEE Trans. Energy Convers., vol. 18, pp. 284-290, 2003.
[62] K. I. Hwu, Development of a switched-reluctance motor drive, Ph.D. Dissertation, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2001.
[63] R. Krishnan and R. A. Bedingfield, “Dynamic analysis of an SRM drive system,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1991, vol. 1, pp. 265-271.
[64] H. K. Bae and R. Krishnan, “A study of current controllers and development of a novel current controller for high performance SRM drives,” in Conf. Rec. IEEE-IAS Annu. Meeting, 1996, vol. 1, pp. 68-75.
[65] F. Blaabjerg, P. C. Kjaer, P. O. Rasmussen and C. Cossar, “Improved digital current control methods in switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 14, no. 3, pp. 563-572, 1999.
[66] G.. Gallegos-Lopez and K. Rajashekara, “Peak PWM current control of switched reluctance and AC machines” in Proc. Ind. Applicat. Conf., 2002, vol. 2, pp. 1212-1218.
[67] R. B. Inderka, M. Menne and R. W. A. A. De Doncker, “Control of switched reluctance drives for electric vehicle applications” IEEE Trans. Ind. Electron., vol. 49, pp. 48-53, 2002.
[68] S. E. Schulz and K. M. Rahman, “High-performance digital PI current regulator for EV switched reluctance motor drives,” IEEE Trans. Ind. Applicat., vol. 39, no. 4, pp. 1118-1126, 2003.
[69] L. O. A. P. Henriques, P. J. C. Branco, L. G. B. Rolim and W. I. Suemitsu, “Proposition of an off line learning current modulation for torque-ripple reduction in switched reluctance motors: design and experimental evaluation,” IEEE Trans. Ind. Electron., vol. 49, no. 3, pp. 665-676, 2002.
[70] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Practical application of backstepping nonlinear current control to a switched-reluctance motor,” in Proc. American Control, 2000, vol. 1, pp. 594-599.
[71] S. K. Sahoo, S. K. Panda and J. X. Xu, “Iterative learning-based high-performance current controller for switched reluctance motors,” IEEE Trans. Energy Convers., vol. 19, no. 3, pp. 491-498, 2004.
[72] M. R. Benhadria, K. Kendouci and B. Mazari, “Torque ripple minimization of switched reluctance motor using hysteresis current control,” in Proc. IEEE ISIE, 2006, pp. 2158-2162.
[73] R. Gobbi and K. Ramar, “Optimisation techniques for a hysteresis current controller to minimise torque ripple in switched reluctance motors,” IET Proc. Elect. Power Applicat., vol. 3, no. 5, pp. 453-460, 2009.
[74] P. Chancharoensook and M. F. Rahman, “A high-precision speed control of a four-phase switched reluctance motor drive using closed-loop controllers of instantaneous torque and current,” in Proc. IEEE IECON, 2004, vol. 3, pp. 2355-2360.
[75] S. K. Panda and P. K. Dash, “Application of nonlinear control to switched reluctance motors: a feedback linearization approach,” IEE Proc. Elect. Power Applicat., 1996, vol. 143, no. 5, pp. 371-379.
[76] M. T. Alrifai, J. H. Chow and D. A. Torrey, “Backstepping nonlinear speed controller for switched-reluctance motors,” IEE Proc. Elect. Power Applicat., 2003, vol. 150, no. 2, pp. 193-200.
[77] J. Uffe and J. W. Ahn, “Non linear, time variant speed control of a single phase hybrid switched reluctance motor,” in Proc. IEEE INTELEC, 2009, pp. 1-5.
[78] G. John and A. R. Eastham, “Speed control of switched reluctance motor using sliding mode control strategy,” in Proc. IEEE IAS, 1995, vol. 1, pp. 263-270.
[79] C. Bian, Y. Man, C. Song and S. Ren, “Variable structure control of switched reluctance motor and its application,” in Proc. WCICA, 2006, vol. 1, pp. 2490-2493.
[80] M.S. Islam, I. Husain, R. J. Veillette and C. Batur, “Design and performance analysis of sliding-mode observers for sensorless operation of switched reluctance motors,” IEEE Trans. Contr. Syst. Technol., vol. 11, pp. 383-389, 2003.
[81] T. S. Chuang and C. Pollock, “Robust speed control of a switched reluctance vector drive using variable structure approach,” IEEE Trans. Ind. Electron., vol. 44, no. 6, pp. 800-808, 1997.
[82] K. I. Hwu and C. M. Liaw, “Robust quantitative speed control of a switched reluctance motor,” IEE Proc. Electric Power Applicat., 2001, vol. 148, no. 4.
[83] C. Lucas, M. M. Shanehchi, P. Asadi and P. M. Rad, “A robust speed controller for switched reluctance motor with nonlinear QFT design approach,” in Proc. IEEE IAS, 2000, vol. 3, pp. 1573-1577.
[84] G. John and A. R. Eastham “Robust speed control of a switched reluctance drive,” in Proc. IEEE CCECE, 1993. pp. 317-320.
[85] J. Y. Seo, H. R. Cha, H. Y. Yang, J. C. Seo, K. H. Kim, Y. C. Lim and D. H. Jang, “Speed control method for switched reluctance motor drive using self-tuning of switching angle,” in Proc. IEEE ISIE, 2001, vol. 2, pp. 811-815.
[86] T. Koblara, “Implementation of speed controller for switched reluctance motor drive using fuzzy logic,” in Proc. IEEE OPTIM, 2008, pp. 101-105.
[87] S. K. Panda, X. M. Zhu and P. K. Dash, “Fuzzy gain scheduled PI speed controller for switched reluctance motor drive,” in Proc. IEEE IECON, 1997, vol. 3, pp. 989-994.
[88] B. Singh, V. K. Sharma and S. S. Murthy, “Performance analysis of adaptive fuzzy logic controller for switched reluctance motor drive system,” in Proc. IEEE IAS, 1998, vol. 1, pp. 571-579.
[89] K. I. Hwu and C. M. Liaw, “Quantitative speed control for SRM drive using fuzzy adapted inverse model,” IEEE Trans. Aerosp. Electron. Syst., vol. 38, no. 3, pp. 955-968, 2002.
D. Commutation Tuning
[90] J. J. Gribble, P. C. Kjaer, C. Cossar and T. J. E. Miller, “Optimal commutation angles for current controlled switched reluctance motors,” in Proc. IET ICPEVSD, 1996, pp. 87-92.
[91] P. C. Kjaer, P. Nielsen, L. Andersen and F. Blaabjerg, “A new energy optimizing control strategy for switched reluctance motors,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1088-1095, 1995.
[92] J. P. Hong, B. S. Choi, S. J. Park, S. J. Kwon and M. H. Lee, “Switching angle control of the SRM for maximization of energy conversion ratio,” in Proc. IEEE ASME, 2003, vol. 2 , pp. 1151-1159.
[93] C. Mademlis and I. Kioskeridis, “Performance optimization in switched reluctance motor drives with online commutation angle control,” IEEE Trans. Energy Convers., vol. 18, no. 3, pp. 448-457, 2003.
[94] M. Rodrigues, P. J. Costa Branco and W. Suemitsu, “Fuzzy logic torque ripple reduction by turn-off angle compensation for switched reluctance motors,” IEEE Trans. Ind. Electron., vol. 48, pp. 711-715, 2001.
[95] J. J. Gribble, P. C. Kjaer and T. J. E. Miller, “Optimal commutation in average torque control of switched reluctance motors,” IEE Proc. Elect. Power Applicat., 1999, vol. 146, no. 1, pp. 2-10.
[96] R. Orthmann and H.P. Schoner, “Turn-off angle control of switched reluctance motors for optimum torque output,” in Proc. Fifth European Conf. on Power Electron. and Applicat., 1993, vol. 6, pp. 20-25.
[97] A. V. Rajarathnam, B. Fahimi and M. Ehsani, “Neural network based self-tuning control of a switched reluctance motor drive to maximize torque per ampere,” in Proc. IEEE IAS, 1997, vol. 1, pp. 548-555.
[98] B. Fahimi, G. Suresh, J. P. Johnson, M. Ehsani, M. Arefeen and I. Panahi, “Self-tuning control of switched reluctance motors for optimized torque per ampere at all operating points,” in Proc. IEEE APEC, 1998, vol. 2, pp. 778-783.
[99] S. A. Fatemi, H. M. Cheshmehbeigi and E. Afjei, “Self-tuning approach to optimization of excitation angles for switched-reluctance motor drives,” in Proc. IEEE ECCTD, 2009, pp. 851-856.
[100] K. I. Hwu and C. M. Liaw, “Intelligent tuning of commutation for maximum torque capability of a switched reluctance motor,” IEEE Trans. Energy Convers., vol. 18, no. 1, pp. 113-120, 2003.
E. Generating Mode and Regenerative Braking Control
[101] D. A. Torrey, “Switched reluctance generators and their controls,” IEEE Trans. Ind. Electron., vol. 49, no.1, pp. 3-14, 2002.
[102] I. Kioskeridis and C. Mademlis, “Optimal efficiency control of switched reluctance generators,” IEEE Trans. Power Electron., vol. 21, no. 4, pp. 1062-1072, 2006.
[103] Y. C. Chang and C. M. Liaw, “On the design of power circuit and control scheme for switched reluctance generator,” IEEE Trans. Power Electron., vol. 23, no. 1, pp. 445-454, 2008.
[104] E. Echenique, J. Dixon, R. Cardenas and R. Pena, “Sensorless control for a switched reluctance wind generator, based on current slopes and neural networks,” IEEE Trans. Ind. Electron., vol. 56, no.3, pp. 817-825, 2009.
[105] X. Liu, C. Liu, M. Lu and D. Liu, “Regenerative braking control strategies of switched reluctance machine for electric bicycle,” in Proc. IEEE ICEMS, 2008, pp. 3397-3400.
F. Battery Powered Motor Drives and Front-End Converters
[106] K. Asano, Y. Inaguma, H. Ohtani, E. Sato, M. Okamura and S. Sasaki, “High performance motor drive technologies for hybrid vehicles,” in Proc. PCC Conf., 2007, pp. 1584-1589.
[107] K. M. Rahman, B. Fahimi, G. Suresh, A. V. Rajarathnam and M. Ehsani, “Advantages of switched reluctance motor applications to EV and HEV: design and control issues,” IEEE Trans. Ind. Appl., vol. 36, no. 1, pp. 111-121, 2000.
[108] M. Krishnamurthy, C. S. Edrington, A. Emadi, P. Asadi, M. Ehsani and B. Fahimi, “Making the case for applications of switched reluctance motor technology in automotive products,” IEEE Trans. Power Electron., vol. 21, pp. 659-675, 2006.
[109] R. B. Inderka, M. Menne and R. W. De Doncker, “Control of switched reluctance drives for electric vehicle applications,” IEEE Trans. Ind. Electron., vol. 49, no. 1, pp. 48-53, 2002.
[110] A. Fratta, P. Guglielmi, F. Villata and A. Vagati, “Efficiency and cost-effectiveness of AC drives for electric vehicles improved by a novel, boost DC-DC conversion structure,” in Proc. IEEE Power Electronics in Transportation Conf., 1998, pp. 11-19.
[111] F. Caricchi, F. Crescimbini, G. Noia and D. Pirolo, “Experimental study of a bidirectional DC-DC converter for the DC link voltage control and the regenerative braking in PM motor drives devoted to electrical vehicles,” in Proc. IEEE APEC,1994, vol. 1, pp. 381-389.
[112] F. Caricchi, F. Crescimbini and A. D. Napoli, “20kW water-cooled prototype of a buck-boost bidirectional DC-DC converter topology for electrical vehicle motor drives,” in Proc. IEEE APEC, 1995, pp. 887-892.
[113] F. Caricchi, F. crescimbini, F. G. Capponi and L. Solero, “Study of bi-directional buck-boost converter topologies for application in electrical vehicle motor drives,” in Proc. IEEE APEC, 1998, vol. 1, pp. 287-293.
[114] Y. G. Hu, Development of front-end converter and automatic commutation tuning control study for switched reluctance motor, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2004.
[115] S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
[116] K. T. Weng and C. Pollock, “Low-cost battery-powered switched reluctance drives with integral battery-charging capability,” IEEE Trans. Ind. Appl., vol. 36, no. 6, pp. 1676-1681, 2000.
[117] K. P. Yalamanchili and M. Ferdowsi, “Review of multiple input DC-DC converters for electric and hybrid vehicles,” in Proc. IEEE Vehicle Power and Propulsion Conf., 2005, pp. 552-555.
[118] T. Gopalarathnam and H. A. Toliyat, “A high power factor converter topology for switched reluctance motor drives,” in Proc. IEEE IAS, 2002, pp. 1647-1652.
[119] P. Vijayraghavan and R. Krishnan, “Front-end buck converter topology for SRM drives-design and control,” in Proc. IEEE IECON, 2003, pp. 3013-3018.
[120] A. K. Jain and N. Mohan, “SRM power converter for operation with high demagnetization voltage,” IEEE Trans. Ind. Appl., vol. 41, pp. 1224-1231, 2005.
[121] R. Krishnan, S. Y. Park and K. Ha, “Theory and operation of a four-quadrant switched reluctance motor drive with a single controllable switch-the lowest cost four-quadrant brushless motor drive,” IEEE Trans. Ind. Appl., vol. 41, pp. 1047-1055, 2005.
G. Switch-Mode Rectifiers and Battery Chargers
[122] R. W. Erickson and D. Maksimovic, Fundamentals of Power Electronics, ed., Kluwer Academic Publishers, Norwell Massachusetts, 2001.
[123] O. Garcia, J. A. Cobos, R. Prieto, P. Alou and J. Uceda, “Single phase power factor correction: a survey,” IEEE Trans. Power Electron., vol. 18, no. 3, pp. 749-755, 2003.
[124] B. Singh, B. N. Singh, A. Chandra, K. Al-Haddad, A. Pandey and D.P. Kothari, “A review of single-phase improved power quality AC–DC converters,” IEEE Trans. Ind. Electron., vol. 50, no. 5, pp. 962-981, 2003.
[125] M. Hengchun, C. Y. Lee, D. Boroyevich and S. Hiti, “Review of high-performance three-phase power-factor correction circuits,” IEEE Trans. Ind. Electron., vol. 44, no. 4, pp. 437-446, 1997.
[126] B. Singh, N. B. Singh, A. Chandra, K. A. Haddad, A. Pandey and P. D. Kothari, “A review of three-phase improved power quality AC/DC converters,” IEEE Trans. Ind. Electron., vol. 51, no. 3, pp. 641-660, 2004.
[127] R. Erickson, M. Madigan and S. Singer, “Design of a simple high-power-factor rectifier based on the flyback converter,” in Proc. APEC, 1990, pp. 792-801.
[128] R. Morrison and M. G. Egan, “A new modulation strategy for a buck-boost input AC/DC converter,” IEEE Trans. Power Electron., vol. 16, pp. 34-45, 2001.
[129] K. Matsui, I. Yamamoto, T. Kishi, M. Hasegawa, H. Mori and F. Ueda, “A comparison of various buck-boost converters and their application to PFC,” in Proc. IEEE IECON, 2002, vol. 1, pp. 30-36.
[130] J. Chen, D. Maksimovic and R. W. Erickson, “Analysis and design of a low-stress buck-boost converter in universal-input PFC applications,” IEEE Trans. Power Electron., vol. 41, pp. 320-329, 2006.
[131] L. Sollero, V. Serrao, M. Montuoro and A. Romanelli, “Low THD variable load buck PFC converter,” in Proc. PESC, 2008, pp. 906-912.
[132] H. Laszlo, G. Liu and M. J. Milan, “Design-oriented analysis and performance evaluation of buck PFC front-end,” in Proc. APEC, 2009, pp. 1170-1176.
[133] S. K. Sul and S. J. Lee, “An integral battery charger for four-wheel drive electric vehicle,” IEEE Trans. Ind. Appl., vol. 31, no. 5, pp. 1096-1099, 1995.
[134] L. Solero, “Nonconventional on on-board charger for electric vehicle propulsion batteries,” IEEE Trans. Veh. Technol., vol. 50, no. 1, pp. 144-149, 2001.
[135] M. Barnes and C. Pollock, “Forward converters for dual voltage switched reluctance motor drives,” IEEE Trans. Power Electron., vol. 16, no. 1, pp. 83-91, 2001.
[136] F. Lacressonniere and B. Cassoret, “Converter used as a battery charger and a motor speed controller in an industrial truck,” in Proc. EPE Conf., 2005, pp. 1-7.
[137] F. J. Perez-Pinal and I. Cervantes, “Multi-reconfigurable power system for EV applications,” in Proc. EPE-PEMC, 2006, pp. 491-495.
[138] T. M. Lin, Design and implementation of a DSP-based switched reluctance motor drive, Master Thesis, Department of Electrical Engineering, National Tsing Hua University, R.O.C., 2001.
[139] C. M. Liaw and S. J. Chiang, “Robust control of multimodule current-mode controlled converter,” IEEE Trans. Power Electron., vol. 8, no. 4, pp. 455-465, 1993.
[140] C. M. Liaw, Y. M. Lin and K. H. Chao, “A VSS speed controller with model reference response for induction motor drive,” IEEE Trans. Ind. Electron., vol. 48, no. 6, pp. 1136-1147, 2001.