研究生: |
林淑鈴 |
---|---|
論文名稱: |
奈米級導電性二氧化鈦/聚苯乙烯奈米複合材料之性質及抗靜電特性 |
指導教授: |
金惟國
|
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2003 |
畢業學年度: | 91 |
語文別: | 中文 |
論文頁數: | 88 |
中文關鍵詞: | 聚苯乙烯 、奈米金屬氧化物 、抗靜電 、奈米複合材料 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究主要的目的是將導電性奈米金屬氧化物(TiO2)摻混至熱塑性塑膠(聚苯乙烯, PS),以製備具抗靜電特性的熱塑性塑膠。TiO2為無機填料,研究中採用Phenyl Triethoxysilane及KBM-503兩種矽烷偶合劑,對TiO2進行表面改質,使有機化的TiO2能與PS的相容性獲得改善。摻混的方法分別採溶液混合及熔融混合,比較這兩種不同方法所製備的奈米複合材料塊材,其各項性質之異同。由研究結果中發現,PS加入TiO2之後,材料的熱穩定度提高,但機械性質卻下降,即使在11.34vol% (40wt%)的TiO2摻雜量下,電阻值降低的程度仍無法達到抗靜電的要求。其原因為採用熱壓製程所製備的塊材表面,易有一層PS絕緣層存在,使得其電阻值無法降低。
製程改以溶液刮膜的方法,製備奈米複合膜。由實驗的結果得知,PS加入TiO2之後,奈米複合膜的熱穩定度提升,且僅需3vol% (13.39wt%)TiO2摻雜量,即能有效的降低PS的電阻值至106Ω-cm,達到材料抗靜電之要求。
1. E. J. Vinson and J. J. Liou, “Electrostatic Discharge in Semiconductor Devices:An Overview,” Proceedings of the IEEE, vol. 86, no. 2, p.399~418, 1998.
2. D. E. Swenson, “Improved Standards for Specifying Static Control Materials,” Compliance Eng., vol. 17, p.40, 2000.
3. B. Greason, “Dynamics of the Basic ESD Event,” 1993 EOS/ESD Tutorial Notes, p.E-1~E-21, 1993.
4. S. A. Halperin, “Guidelines for Static Control Management,” Eurostat., 1990.
5. R. B. Rosner, “Conductive Materials for ESD Applications:An Overview,” IEEE Transactions on Device Materials Reliability, vol. 1, no. 1, p.9~16, 2001.
6. W. D. Greason and G. S. P. Castle, “The Effects of ESD on Microelectronic Devices- A Review,” IEEE Trans. Ind. Applicat., vol. IA-20, p.247~252, 1984.
7. J. Paasi, S. Nurmi, and R. Vuorinen et. al., “Performance of ESD Protective Materials at Low Relative Humidity,” J. Electrostatics, vol. 51-52, p. 429~434, 2001.
8. W. J. Kirk, “Designing a Workplace,” 1993 EOS/ESD Tutorial Notes, p.B-1~B-23, 1993.
9. 協儷實業有限公司,”靜電釋放塑膠的應用,” 高分子工業, vol. 10, p.88~94, 1990.
10. S. U. Kim, “ESD Induced Gate Oxide Damage During Wafer Fabrication Process,” Proc. EOS/ESD Symp., vol. EOS~14, p.99~105, 1992.
11. R. G. Chemelli, B. A. Unger, and P. R. Bossard, “ESD by Static Induction,” Proc. EOS/ESD Symp., vol. EOS~5, p.29~36, 1983.
12. C. Diaz, S. M. Kang, and C. Duvvury, “Tutorial Electrical Overstress and Electrostatic Discharge,” IEEE Trans. Reliability, vol. 44, p.2~5, 1995.
13. S. Lim, “Conductive Floor and Footwear System as Primary Protection Against Human Body Model ESD Event,” IEEE Transactions on Electronics Packaging Manufacturing, vol. 23, no. 4, 2000.
14. L. van Roozendaal, A. Amerasekera, and P. Bos et. al., “Standard ESD Testing of Integrated Circuits,” Proc. EOS/ESD Symp., vol. EOS~12, p.119~130, 1990.
15. A. Olney, “A Combined Socketed and Nonsocketed CDM Test Approach for Eliminating Real-World CDM Failures,” Proc. EOS/ESD Symp., vol. EOS~18, p.62~75, 1996.
16. D. Pierce, “Physics of Failure and Analysis,” 1993 EOS/ESD Tutorial Notes, p.H-1~H-42, 1993.
17. L. R. Avery, “A Review of Electrostatic Discharge Mechanisms and On-Chip Protection Techniques to Ensure Device Reliability,” J. Electrostatic, vol. 24, p.111~130, 1990.
18. J. Bernier and G. Croft, “ESD Design Consideration,” Harris Semiconductor internal presentation, Mar. 1, 1994.
19. M.Tanaka and K. Okada, “CDM ESD Test Considered Phenomena of Division of High Voltage Discharge in the Environment,” Proc. EOS/ESD Symp., vol. EOS~18, p.54~61, 1996.
20. 刈米孝夫原著,王鳳英編譯,界面活性劑的原理與應用. p217-218.
21. 塑膠e學苑:研發手札-抗靜電劑的作用原理.
22. Y. Muraoka, T. Fujiwara and Y. Sano et. al., “Properties of Polymer Alloy Fibers of Polypropylene and Cation Dyeable Poly(ethylene Terephthalate) Prepared with An in-situ Generated Compatibilizer,” J. Textile Res., vol. 71, p.1053~1056, 2001.
23. W. Chen, Q. Xu, and R. Z. Yuan, “The Influence of Polymer State on the Electrical Properties of Polymer / Layered - Silicate Nanocomposites,” J. Composites Science and Technology, vol. 61, p.935~939, 2001.
24. 黃炳坤,”混練型防靜電成型材料的設計,” 高分子工業,vol. 60, p.38~44, 1995.
25. M. G. Alexander, “Anomalous Temperature Dependence of the Electrical Conductivity of Carbon-Poly(Methyl Methacrylate ) Composites,” J. Materials Research Bulletin, vol. 34, no. 4, p.603~611, 1999.
26. M. Narkis, G. Lidor, and A. Vaxman et. al., “New Injection moldable Electrostatic Dissipative(ESD) Composites Based on Very Low Carbon Black Loading,” J. Electrostatics, vol. 47, p.201~214, 1999.
27. R. Wycisk, R. Pozniak, and A. Pasternak, “Conductive Polymer Materials with Low Filler Content,” J. Electrostatics, vol. 56, p.55~66, 2002.
28. P. J. Mather, K .M. Thomas, “Carbon Black / High Density Polyethylene Conducting Composite Materials,” J. Materials Science, vol. 32, p.401~407, 1997.
29. P. Xiao, M. Xiao, and K.Gong, “Preparation of Exfoliated Graphite/Polystyrene by Polymerization-Filling Technique,” J. Polymer, vol. 42, p.4813~4816, 2001.
30. J. F. Zou, Z. Z. Yu, and Y. X. Pan et. al., ”Conductive Mechanism of Polymer/Graphite Conducting Composites with Low Percolation Threshold,” J. Polymer Science: Part B:Polymer Physics, vol. 40, p.954~963, 2002.
31. W. Zheng, S. C. Wong, “Electrical Conductivity and Dielectric Properties of PMMA/Expanded Graphite Composites,” J. Composites Science and Technology, vol. 63, p.225~235, 2003.
32. 賴耿陽編著,”碳材料化學與工學,” P.24~30.
33. Yoshizumi, Motohiko, “Anti Transparent Coating Composition,” United States Patent, Patent No. 4431764, 1984.
34. M. Takimoto, T. Saida, and M. Murata et. al., “Photosensitive Materials Having Improved Antistatic Property,” United States Patent, Patent No. 4495276, 1985.
35. T. J. Swoboda, L. Pa, “Phosphorous-Doped Tin Oxide Powder,” United States Patent, Patent No. 4514322, 1985.
36. K. Yamada, M. Murase, and O. Takagi et. al., “Fibrous White Electrically Conductive Material and A White Electrically Conductive Coating Composition Containing the Same,” United States Patent, Patent No. 4933109, 1990.
37. C. P. Apprieu, C. Simon, and Voiron, “Antistatic Sheet,’ United States Patent, Patent No. 5677039, 1997.
38. K. T. Chofu, M. Hosoya, and Okegawa, “Image Formation Apparatus Using A Liquid Toner,” United States Patent, Patent No. 6268051 B1, 2001.
39. 周宗華主編,林建中審定,高分子材料. P.516~519, 2000.
40. S. S. Ray, M. Biswas, “Water-Dispersible Conducting Nanocomposites of Polyaniline and Poly(N-Vinylcarbazole) with Nanodimensional Zirconium Dioxide,” J. Synthetic Metals, vol. 108, p.231~236, 2000.
41. A. Bhattacharya, K.M. Ganguly, and A. De et. al., “A New Conducting Nanocomposite PPY-Zirconium(IV) oxide, J. Materials Research Bulletin, vol. 31, no. 5, p.527~530, 1996.
42. R. Gangopadhyay, A. De, “Polypyrrole-Ferric oxide Conducting Nanocomposites I. Synthesis and Characterization,” J. European Polymer, vol. 35, p.1985~1992, 1999.
43. R. Gangopadhyay and A. De, “Transport Properties of Polypyrrole -Ferric oxide Conducting Nanocomposites,’ J. Applied Physics, vol. 87, no. 5, p.2363~2371, 2000.
44. M. Biswas, S. S. Ray, Y. Liu, “Water-Dispersible Conducting Nanocomposites of Poly(N-Vinylcarbazole), Polypyrrole and Polyaniline with Nanodimensional manganese (IV) Oxide,” J. Synthetic Metals, vol. 105, p.99~105, 1999.
45. 塑膠e學苑:研發手札-偶合劑種類.
46. 曾志強,”高分子工業,” vol. 95, p.83~92, 2001.
47. N. Iwashita, E. Psomiadou, and Y. Sawada, “Effect of Coupling Treatment of Carbon Fiber Surface on Mechanical Properties of Carbon Fiber Reinforced Carbon Composites,” J. Composites Part A, p.965~972, 1998.
48. N. J. Lee, J. Jang, “The Use of A Mixed Coupling Agent System to Improve the Performance of Polypropylene-Based Composites Reinforced with Short-Glass-Fiber Mat,” J. Ccmposites Science and Technology, vol. 57, p.1559~1569, 1997.
49. C. A. Wah, L. Y. Choong, and G. S. Neon, “Effects of Titanate Coupling on Rheological Behaviour, Dispersion Characteristics and Mechanical Properties of Talc Filled Polypropylene,” J. European Polymer, vol. 36, p.789~801, 2000.
50. C. Albano, J. Gonzalez, and M. Ichazo et. al., “Mechanical and Morphological Behavior of Polyolefin Blends in the Presence of CaCO3,” J. Composite Structures, vol. 48, p.49~58, 2000.
51. 歐玉春、方曉萍、施懷球、馮宇鵬,”高分子學報,” vol. 1, p.59~63, 1996.
52. M. I. Baraton, L. Merhari, and J. Wang et. al., “Investigation of the TiO2/PPV Nanocomposite for Gas Sensing Applications,” J. Nanotechnology, vol. 9, p.356~359, 1998.
53. A. V. Gonzalez, J. M. Cervantes-Uc, and R. Olayo et. al., “Chemical Modification of Henequen Fibers with An Organosilane Coupling,” J. Composites:Part B, vol. 30, p.321~331, 1999.
54. F. M. Uhl, C. A. Wilkie, “Polystyrene/Graphite Nanocomposites:Effect on Thermal Stability,” J. Polymer Degradation and Stability, vol. 76, p.111~122, 2002.
55. X. Fu, S. Qutubuddin, “Polymer-Clay Nanocomposites:Exfoliation of Organophilic Montmorillonite Nanolayers in Polystyrene,” J. Polymer, vol. 42, p.807~813, 2001.