簡易檢索 / 詳目顯示

研究生: 姜可鈞
Chiang, Ko-Chun
論文名稱: 應用壓力螢光感測塗料技術於90度微彎管內流場量測與分析
The Study of 90 Degree Elbow Microchannel Flow Using Pressure-Sensitive Paint
指導教授: 黃智永
Huang, Chih-Yung
口試委員: 呂明璋
Ming-Chang Lu
陳紹文
Shao-Wen Chen
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2014
畢業學年度: 103
語文別: 中文
論文頁數: 109
中文關鍵詞: 微彎管流道壓力螢光感測技術次要損失
外文關鍵詞: Elbow microchannel, Pressure-Sensitive Paints (PSP), Minor loss
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究主要為應用螢光壓力量測技術於各式微彎管流場,量測其二維壓力分佈並進行流場分析,了解流道不同幾何參數對於90度微彎管流場的影響。所量測的微彎管流場包括四組不同流道深度及寬度的銳角90度微彎管、兩次45度微彎管以及圓弧微彎管,而量測的雷諾數範圍介於88至442之間。在銳角90度彎管的實驗中,實驗所使用4X顯微物鏡可量測流道內全域壓力分佈(空間解析度達3.7 μm/pixel)、10X顯微物鏡則可量測局部彎管處詳細的壓力分佈(空間解析度達1.5 μm/pixel)。
    對於不同流道寬度的銳角90度彎管,在相似雷諾數下,由全域的壓力量測結果可發現流道寬度400 μm的流道(400w100d)其彎管前上游端與彎管後下游處之直管壓力趨勢變化之間有明顯的壓力差,流道寬度200 μm的流道(200w100d)中則沒有,而此壓力差將隨著雷諾數降低而減小。在局部彎管處壓力分佈則發現在彎管處外壁有明顯的高壓區,低壓區則位於出彎處之內壁。對於不同流道深度的銳角90度彎管,由於量測的雷諾數較低,彎管處壓力變化較不清楚,但仍可由無因次化之壓力分佈途中觀察到流道100 μm(400w100d)以及200 μm(400w200d)的全域壓力分佈與400w100d的流道所觀測到的趨勢相似,流道深度60 μm(400w60d)的全域壓力分佈則與200w100d相似。
    對於不同彎管方式的討論則藉由局部彎管處壓力分佈中發現兩次45度角彎管在兩個轉彎的地方皆有高壓區域出現,但其範圍皆小於相似雷諾數於銳角彎管的範圍。圓弧彎管則於流道彎管處外壁發現沿著外壁分布的高壓區。比較三種轉彎方式之無因次化壓力分佈則發現銳角及兩次45度角彎管之高壓區皆會隨著雷諾數降低而減少,圓弧彎管則不變。
    本研究同時利用等效直管長度計算公式比較90度微彎管流道之次要損失。對於銳角90度彎管,雷諾數越大則次要損失亦隨之增加,且較寬的流道其次要損失上升的斜率亦較大,400 μm寬的流道其次要損失將於雷諾數大於200時超過200 μm寬的流道之次要損失,而流道深度越深其次要損失亦越強。兩次45度彎管之次要損失亦會隨著雷諾數增加而變高,但變化幅度小於銳角90度彎管。圓弧彎管之次要損失則不隨著雷諾數改變。


    This study aims to apply Pressure-Sensitive Paint technique to various 90 degree elbow microchannels in order to measure two dimensional pressure distributions and perform analysis in Reynolds number range from 88 to 442. Different designs of 90 degree elbow microchannels are investigated in this study including sharp turn 90 degree microchannels with different channel widths and depths, a double turn elbow microchannel and a round turn microchannel. A 4X and a 10X objective lenses are used to capture the luminescent signals inside the microchannels, and these lenses can deliver magnification of images of 3.7 μm and 1.5 μm per pixel spatial resolution.
    During the investigation of sharp turn microchannel, two microchannels with different widths are studied. From the global pressure distributions acquired from microchannel inlet to exit, significant pressure differences are observed at the locations between before the turn and after the turn in the microchannel with 400 μm width, which cannot be identified in the microchannel with 200 μm width. In local pressure measurement around the corner, threre is a high pressure zone near the outside wall of corner and also a low pressure region at the inner wall downstream after the corner. As for study with different depths of microchannels, the sharp microchannels with 200 μm depth and 100 μm depth have the same trend which are like the results acquired in the microchannel with 400 μm width,. For different elbow designs of double turn and round turn, there are two high pressure zones obersved in double turn microchannel near each 45 degree turn. There is a high pressure region continuously developing around the outside wall of round turn microchannel at different Reynolds conditions. In order to compare the pressure loss in different cases which is considered as minor loss of energy, the equation calculating equivilent length for the 90 degree turns in the microchannel flow is used. For the microchannel flow with 90 degree sharp turn, the minor loss increases as the Renolds number comes larger. If the Reynolds number is greater then 200, the minor loss estimated in the microchannel with 400 μm width becomes larger than the one with 200 μm width, and the minor loss is always greater if the depth of microchannel is bigger. From the experimental results acqruied in this study with different designs of 90 degree elbow microchannel flows, the physical phenomena of flow patterns in such devices become clearer.

    摘要 II ABSTRACT IV 致謝 VI 目錄 VIII 圖目錄 XI 表目錄 XVI 第一章、 緒論 1 1.1 研究動機 1 1.2 文獻回顧 4 1.2.1 氣體於微流道內之流體現象 4 1.2.2 90度彎管微流道內流場的研究 9 1.2.3 PSP壓力感測螢光塗料於微流道之發展與應用 15 1.3 研究目的 18 1.4 論文架構 20 第二章、 數值模擬分析 21 2.1 數值模擬基本假設 21 2.2 微流道彎管模型建立 22 2.3 微流道彎管模擬結果與實驗結果比較 27 第三章、 實驗原理 29 3.1 螢光壓力感測分子基礎理論 29 3.2 螢光壓力感測分子壓力量測原理 32 第四章、 實驗方法 35 4.1 PSP螢光壓力感測微流道製作 35 4.1.1 PDMS微流道製作流程 35 4.1.2 PSP螢光壓力感測玻片製作流程 42 4.1.3 PDMS微流道與PSP螢光壓力感測玻片之黏結及處理 46 4.2 實驗儀器架設 47 4.2.1 顯微鏡螢光訊號擷取系統架設 48 4.2.2 流體管路控制系統架設 49 4.3 實驗操作方法 50 4.3.1 校正曲線量測 50 4.3.2 逐點影像校正法量取壓力 55 4.4 實驗誤差分析 56 4.5 實驗系統定位說明 59 第五章、 90度銳角微流道彎管於不同流道深度及寬度之壓力場量測結果與討論 62 5.1 等效直管長度 63 5.2 不同流道寬度的實驗結果比較 66 5.2.1 不同流道寬度之全域壓力量測結果與討論 68 5.2.2 不同流道寬度之彎管處局部壓力量測結果與討論 72 5.3 不同流道深度的實驗結果比較 81 5.3.1 不同流道深度之全域壓力量測結果與討論 83 5.3.2 不同流道深度之彎管處局部壓力量測結果與討論 86 第六章、 90度彎管微流道在不同轉彎設計之壓力場量測結果與討論 90 6.1 兩次45度彎管(Double turn)微流道局部壓力量測結果與討論 91 6.2 圓弧彎管(Round turn)微流道局部壓力量測結果與討論 95 6.3 不同彎管方式綜合討論 99 第七章、 結論與未來工作建議 104 7.1 結論 104 7.2 未來工作建議 106 參考文獻 107

    [1] R. P. Feynman, "There's plenty of room at the bottom," Engineering and science, vol. 23, pp. 22-36, 1960.
    [2] F. Breussin and B. Roussel, "The POC testing market based on Microfluidics technology will reach more than $16B in 2017," 2012.
    [3] B. Roussel, "How will microfluidics applications change the material mix and quadruple the microfluidic device market in the next five years?," 2013.
    [4] B. Roussel, "Point of Care Testing 2014: Applications for Microfluidic Technologies," 2014.
    [5] K. V. Sharp, R. J. Adrian, J. G. Santiago, and J. I. Molho, "Liquid flows in microchannels," The MEMS Handbook, Mohamed Gad-El-Hak, editor. CRC Press, Boca Raton, 2002.
    [6] M. Gad-el-Hak, "The fluid mechanics of microdevices—the Freeman scholar lecture," Journal of Fluids Engineering, vol. 121, pp. 5-33, 1999.
    [7] C. M. Ho and Y. C. Tai, "Micro-electro-mechanical-systems (MEMS) and fluid flows," Annual Review of Fluid Mechanics, pp. 30-579, 1998.
    [8] D. J. Beebe, G. A. Mensing, and G. M. Walker, "Physics and applications of microfluidics in biology," Annual review of biomedical engineering, vol. 4, pp. 261-286, 2002.
    [9] G. Karniadakis, A. Beşkök, and N. R. Aluru, Microflows and nanoflows : fundamentals and simulation. New York, NY: Springer, 2005.
    [10] S. Jennings, "The mean free path in air," Journal of Aerosol Science, vol. 19, pp. 159-166, 1988.
    [11] S. Schaaf and P. Chambre, "Flow of Rarefied Gases, Vol. 8," ed: Princeton University Press, Princeton, New Jersey, 1961.
    [12] S. Colin, "Rarefaction and compressibility effects on steady and transient gas flows in microchannels," Microfluidics and Nanofluidics, vol. 1, pp. 268-279, 2005.
    [13] F. O. Goodman, Dynamics of gas-surface scattering: Elsevier, 2012.
    [14] G. Karniadakis, A. Beskok, and M. Gad-el-Hak, "Micro flows: fundamentals and simulation," Applied Mechanics Reviews, vol. 55, p. 76, 2002.
    [15] J. D. Anderson, Modern compressible flow with historical perspective, 2003.
    [16] Z. Y. Guo and X. B. Wu, "Compressibility effect on the gas flow and heat transfer in a microtube," International Journal of Heat and Mass Transfer, vol. 40, pp. 3251-3254, Sep 1997.
    [17] S. Y. K. Lee, M. Wong, and Y. Zohar, "Gas flow in microchannels with bends," Journal of micromechanics and microengineering, vol. 11, p. 635, 2001.
    [18] M. Wang and Z. Li, "Simulations for gas flows in microgeometries using the direct simulation Monte Carlo method," International Journal of Heat and Fluid Flow, vol. 25, pp. 975-985, 2004.
    [19] A. Agrawal, L. Djenidi, and A. Agrawal, "Simulation of gas flow in microchannels with a single 90 bend," Computers & Fluids, vol. 38, pp. 1629-1637, 2009.
    [20] C. White, M. K. Borg, T. J. Scanlon, and J. M. Reese, "A DSMC investigation of gas flows in micro-channels with bends," Computers & Fluids, vol. 71, pp. 261-271, 2013.
    [21] K. Nakakita, M. Kurita, and K. Mitsuo, "Development of the pressure-sensitive paint measurement for large wind tunnels at japan aerospace exploration agency," in 24th Congress of the International Council of the Aeronautical Sciences, 2004.
    [22] T. Liu and J. P. Sullivan, Pressure and temperature sensitive paints. Berlin ; New York: Springer, 2005.
    [23] C. Huang, J. W. Gregory, and J. P. Sullivan, "Microchannel pressure measurements using molecular sensors," Journal of Microelectromechanical Systems, vol. 16, pp. 777-785, Aug 2007.
    [24] H. Mori, T. Niimi, M. Hirako, and H. Uenishi, "Pressure sensitive paint suitable to high Knudsen number regime," Measurement Science & Technology, vol. 17, pp. 1242-1246, Jun 2006.
    [25] C. Y. Huang and C. M. Lai, "Pressure measurements with molecule-based pressure sensors in straight and constricted PDMS microchannels," Journal of Micromechanics and Microengineering, vol. 22, Jun 2012.
    [26] 陳瑩璇, "The Application of Pressure Sensitive Paint for Investigation of Constricted Microchannel Flows," 碩士論文, 動力機械研究所, 清華大學, 2013.
    [27] 李佳烜, "The Application of Pressure Sensitive Paints for Investigation of Rarefied and Compressible Flows in Microchannel," 碩士論文, 動力機械研究所, 清華大學, 2014.
    [28] T. Liu, Pressure‐and Temperature‐Sensitive Paints: Wiley Online Library, 2004.
    [29] M. I. Stich and O. S. Wolfbeis, "Fluorescence sensing and imaging using pressure-sensitive paints and temperature-sensitive paints," in Standardization and Quality Assurance in Fluorescence Measurements I, ed: Springer, 2008, pp. 429-461.
    [30] C.-Y. Huang, C.-M. Lai, and J.-S. Li, "Applications of pixel-by-pixel calibration method in microscale measurements with pressure-sensitive paint," Microelectromechanical Systems, Journal of, vol. 21, pp. 1090-1097, 2012.
    [31] S. J. Kline and F. A. McClintock, Describing uncertainties in single sample experiments vol. 75, 1953.
    [32] J. P. Hubner, B. F. Carroll, K. S. Schanze, and J. Hia Feng, "Techniques for using pressure-sensitive paint in shock tunnel facilities," in Instrumentation in Aerospace Simulation Facilities, 1997. ICIASF '97 Record., International Congress on, 1997, pp. 30-39.
    [33] E. B. Arkilic, M. A. Schmidt, and K. S. Breuer, "Gaseous slip flow in long microchannels," Journal of Microelectromechanical Systems, vol. 6, pp. 167-178, Jun 1997.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE