研究生: |
陳名冠 Chen, Ming Guan |
---|---|
論文名稱: |
微波輔助水熱法合成金屬氧化物在電化學能源系統之應用 Synthesis of Metal Oxide Nanomaterials via a Microwave-Assisted Hydrothermal Method for Electrochemical Energy Applications |
指導教授: |
胡啟章
Hu, Chi Chang |
口試委員: |
衛子健
白育綸 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2015 |
畢業學年度: | 103 |
語文別: | 中文 |
論文頁數: | 189 |
中文關鍵詞: | 釔穩定氧化鋯 、氧化釩 、超級電容器 、實驗設計法 、微波輔助水熱法 |
外文關鍵詞: | Yttria-stabilized zirconia, vanadium oxide, supercapacitor, fractional factorial design, Microwave-assisted hydrothermal method |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
於本論文中,將利用微波輔助水熱法合成釔穩定氧化鋯及釩氧化物,應用於電化學能源系統中,研究結果主要分為兩個部分:
第一部分為利用26-1部分因素實驗設計法來控制微波輔助水熱 (Microwave-Assisted Hydrothermal Method, MAH)合成釔穩定氧化鋯(Yttria-stabilized zirconia, YSZ)之結晶大小。經由控制六個變因,分別為微波水熱溫度、反應持溫時間、前驅物濃度、分散劑含量、有機添加劑量及KOH濃度可以得到不同結晶大小的YSZ。由變異數分析可知結晶大小受到前驅物濃度、分散劑含量及KOH濃度的影響。此外,前驅物濃度對分散劑含量及KOH濃度的交互作用亦會影響YSZ結晶大小。隨後欲尋求更大或更小的YSZ結晶顆粒,利用最陡升途徑實驗法,發現YSZ結晶大小隨著C(Zr4+濃度)、D(H2O:C2H5OH)及F(KOH濃度)的增加而提升,並可準確控制YSZ的晶粒大小(1 nm至6.1 nm)。於奈米結構電極製備中,利用PS奈米球與不同晶粒大小的YSZ粉體以重量比1比1的比例於Triton X-100中分散均勻後,乾燥、並於高溫600 °C熱處理去除PS奈米球,而獲得規則化奈米孔洞YSZ結構。
材料分析與鑑定方面,以X-光繞射儀(XRD)鑑定YSZ的晶相與晶粒大小;掃描式電子顯微鏡(SEM)及穿透式電子顯微鏡(TEM)觀察表面型態、微結構及粒子聚集情況;感應耦合電漿質譜分析儀(ICP-MS)分析材料的元素組成比例。
第二部份則以硫酸氧釩(VOSO4)為前驅液,藉由添加不同濃度的氯化鋰(LiCl)於前驅液中,利用微波輔助水熱法合成鋰離子摻雜釩氧化物。首先為利用循環伏安法(CV)找出最適化之摻雜濃度後,以此摻雜濃度為依據,分別比較鉀離子、鈉離子及鋰離子摻雜釩氧化物之電化學特性。經過一連串的測試後,發現以50 mM鋰離子摻雜釩氧化物具有最優異的比電容值(170.98 F g-1)、循環壽命及電化學可逆性。於材料分析方面,則為探討釩氧化物活化前後之材料性質改變。綜合XRD、SEM、TEM及電子能譜儀(XPS)之分析,可以得知活化前,以50 mM鋰離子摻雜釩氧化物具有最大的面間距,且有大量的H2V3O8奈米柱狀結構產生,前者可以提升電解液中鋰離子遷入-遷出釩氧化物的量,後者產生的結構具有優異的鋰離子遷入-遷出特性,因此提升其電化學特性。活化後,由CV之分析中,可得知其圖形轉變為強而對稱的氧化還原峰。造成此結果可由釩氧化物之溶解-再沉積的機制所證明。此機制證明可由SEM的分析中,得知經過活化後,釩氧化物之表面型態與活化前相比,轉變成均勻披覆的形貌。並且於XPS的分析中,可得其表面產生了Li 1s軌域的訊號,說明了經由再沉積後的釩氧化物,有鋰離子的摻雜,可以產生特殊的鋰離子通道,大幅提升電解液中鋰離子遷入-遷出量及速度,大幅提升其電化學特性。
This study mainly focuses on the synthesis of yttria-stabilized zirconia (YSZ) and vanadium oxide nanomaterials via a microwave- assisted hydrothermal method for electrochemical energy storage. The results were divided into two parts.
In the first part, the controllable crystal size of yttria-stabilized zirconia (YSZ) was synthesized by using design of experiments (DOE) in a microwave-assisted hydrothermal synthesis. The different crystal sizes of YSZ can be obtained by controlling the parameters such as reaction temperature, holding time, precursor concentration, dispersant content, organic additives and KOH concentration. Then, we employ the steepest ascent experiment to find out bigger and smaller crystal size of YSZ. According to steepest ascent results, the crystal size of YSZ can be precisely controlled from 1 nm to 6.1 nm, respectively. PS nanospheres were used to prepare the YSZ electrodes with the highly ordered nanoporous structures.
In the second part, the lithium-ion doped vanadium oxide was prepared via a microwave-assisted hydrothermal method by using VOSO4 as precursor and by adding different concentration of LiCl as the lithium-ion source in the precursor solution. Cyclic voltammetry was used to optimize the lithium ion doping concentration. Based on the optimized doping concentration, other cations such as KCl and NaCl were also added to the precursor solution to prepare the potassium-ion and sodium-ion doped vanadium oxide, respectively. On comparison with different cations doped vanadium oxides, 50 mM lithium-ion doped vanadium exhibits highest specific capacitance (170.98 F g-1), longer cycle life and excellent electrochemical reversibility. The 50 mM lithium-ion doped vanadium oxide also possesses highest spacing distance between two adjacent oxide layers and large amount of H2V3O8 nanorods are produced before activation. This leads to enhance in the capacity of the lithium-ion intercalation/de-intercalation. After activation, the CV curves shows strong and symmetric redox peaks. It can be proved by the dissolution/re-deposition mechanism. The doped lithium-ion also can help to create the special lithium-ion intercalation/de-intercalation tunnels, which can increase more ion intercalation sites and/or to provide fast diffusion pathways.
[1] 胡啟章, 電化學原理與方法: 五南圖書出版股份有限公司, 2002.
[2] A. J. Bard and L. R. Faulkner, "Electrochemical Methods: Fundamentals and applications, 2nd ed. ," John Wiley & Sons Inc, New York, 2001.
[3] E. Khoo, J. Wang, J. Ma, and P. S. Lee, "Electrochemical energy storage in a β-Na 0.33 V2O5 nanobelt network and its application for supercapacitors," Journal of Materials Chemistry, vol. 20, pp. 8368-8374, 2010.
[4] D. Pletcher and F. C. Walsh, Industrial electrochemistry: Springer Science & Business Media, 1990.
[5] 張光揮, "循環伏安製備含水釕銥氧化物於電化學電容器的應用," 國立中正大學化學工程研究所碩士論文, 2000.
[6] A. M. Couper, D. Pletcher, and F. C. Walsh, "Electrode materials for electrosynthesis," Chemical Reviews, vol. 90, pp. 837-865, 1990.
[7] D. Galizzioli, F. Tantardini, and S. Trasatti, "Ruthenium dioxide: a new electrode material. II. Non-stoichiometry and energetics of electrode reactions in acid solutions," Journal of Applied Electrochemistry, vol. 5, pp. 203-214, 1975.
[8] M. Ni, M. K. Leung, D. Y. Leung, and K. Sumathy, "A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production," Renewable and Sustainable Energy Reviews, vol. 11, pp. 401-425, 2007.
[9] J. Turner, G. Sverdrup, M. K. Mann, P. C. Maness, B. Kroposki, M. Ghirardi, et al., "Renewable hydrogen production," International Journal of Energy Research, vol. 32, pp. 379-407, 2008.
[10] S. D. Ebbesen, R. Knibbe, and M. Mogensen, "Co-electrolysis of steam and carbon dioxide in solid oxide cells," Journal of The Electrochemical Society, vol. 159, pp. F482-F489, 2012.
[11] Q. Fu, C. Mabilat, M. Zahid, A. Brisse, and L. Gautier, "Syngas production via high-temperature steam/CO2 co-electrolysis: an economic assessment," Energy & Environmental Science, vol. 3, pp. 1382-1397, 2010.
[12] M. Mogensen, N. M. Sammes, and G. A. Tompsett, "Physical, chemical and electrochemical properties of pure and doped ceria," Solid State Ionics, vol. 129, pp. 63-94, 2000.
[13] V. Kharton, F. Marques, and A. Atkinson, "Transport properties of solid oxide electrolyte ceramics: a brief review," Solid State Ionics, vol. 174, pp. 135-149, 2004.
[14] R. P. Ingel, "Lattice Parameters and Density for Y2O3‐Stabilized ZrO2," Journal of the American Ceramic Society, vol. 69, pp. 325-332, 1986.
[15] M. Verkerk, B. Middelhuis, and A. Burggraaf, "Effect of grain boundaries on the conductivity of high-purity ZrO2-Y2O3 ceramics," Solid State Ionics, vol. 6, pp. 159-170, 1982.
[16] A. Feinberg and C. H. Perry, "Structural disorder and phase transitions in ZrO2-Y2O3 system," Journal of Physics and Chemistry of Solids, vol. 42, pp. 513-518, // 1981.
[17] I. Gibson, G. Dransfield, and J. Irvine, "Influence of yttria concentration upon electrical properties and susceptibility to ageing of yttria-stabilised zirconias," Journal of the European Ceramic Society, vol. 18, pp. 661-667, 1998.
[18] S. P. Jiang and S. H. Chan, "A review of anode materials development in solid oxide fuel cells," Journal of Materials Science, vol. 39, pp. 4405-4439, 2004.
[19] W. Wang, Y. Huang, S. Jung, J. M. Vohs, and R. J. Gorte, "A comparison of LSM, LSF, and LSCo for solid oxide electrolyzer anodes," Journal of The Electrochemical Society, vol. 153, pp. A2066-A2070, 2006.
[20] E. Roduner, "Size matters: why nanomaterials are different," Chemical Society Reviews, vol. 35, pp. 583-592, 2006.
[21] P. P. Edwards, R. L. Johnston, and C. Rao, "On the Size‐Induced Metal‐Insulator Transition in Clusters and Small Particles," Metal Clusters in Chemistry, pp. 1454-1481, 1999.
[22] Y. Suzuki, "On the stationary electrical conductivity of sintered fluorite-type Y2O3-stabilized ZrO2," Solid state ionics, vol. 78, pp. 245-248, 1995.
[23] Y. J. Leng, S. H. Chan, K. A. Khor, S. P. Jiang, and P. Cheang, "Effect of characteristics of Y2O3/ZrO2 powders on fabrication of anode-supported solid oxide fuel cells," Journal of power sources, vol. 117, pp. 26-34, 2003.
[24] X. Zhao, B. M. Sánchez, P. J. Dobson, and P. S. Grant, "The role of nanomaterials in redox-based supercapacitors for next generation energy storage devices," Nanoscale, vol. 3, pp. 839-855, 2011.
[25] J. Zhu, L. Cao, Y. Wu, Y. Gong, Z. Liu, H. E. Hoster, et al., "Building 3D structures of vanadium pentoxide nanosheets and application as electrodes in supercapacitors," Nano letters, vol. 13, pp. 5408-5413, 2013.
[26] L. Micor Denshi co., "Introduction to Microwave," vol. http://www.microdenshi.co.jp/en/microwave/.
[27] B. L. Hayes, "Microwave Synthesis," CEM, 2002.
[28] C. O. Kappe, D. Dallinger, and S. S. Murphree, Practical microwave synthesis for organic chemists: John Wiley & Sons, 2008.
[29] 科安企業股份有限公司, "「聚焦微波化學反應系統」," 2006.
[30] G. Wolten, "Diffusionless phase transformations in zirconia and hafnia," Journal of the American Ceramic Society, vol. 46, pp. 418-422, 1963.
[31] F. Gallino, C. Di Valentin, and G. Pacchioni, "Band gap engineering of bulk ZrO2 by Ti doping," Physical Chemistry Chemical Physics, vol. 13, pp. 17667-17675, 2011.
[32] M. Schubert, S. Senz, and D. Hesse, "Structure of epitaxial Mn-stabilized ZrO2 layers on yttria-stabilized zirconia single crystals prepared by sputtering," Thin Solid Films, vol. 517, pp. 5676-5682, 2009.
[33] D. L. PORTER and A. Heuer, "Mechanisms of toughening partially stabilized zirconia (PSZ)," Journal of the American Ceramic Society, vol. 60, pp. 183-184, 1977.
[34] R. C. Garvie, "Zirconium dioxide and some of its binary system : High temperature oxide part Ⅱ," Ed. by A. M. Alper, Academic Press, New York, vol. 117, 1970.
[35] D. Strickler and W. Carlson, "Ionic Conductivity of Cubic Solid Solutions in the System CaO—Y2O3—ZrO2," Journal of the American Ceramic Society, vol. 47, pp. 122-127, 1964.
[36] T. Tien and E. Subbarao, "X‐Ray and Electrical Conductivity Study of the Fluorite Phase in the System ZrO2–CaO," The Journal of Chemical Physics, vol. 39, pp. 1041-1047, 1963.
[37] S. H. Chu and M. A. Seitz, "The ac electrical behavior of polycrystalline ZrO2-CaO," Journal of Solid State Chemistry, vol. 23, pp. 297-314, 1/30/ 1978.
[38] C. F. Grain, "Phase Relations in the ZrO2‐MgO System," Journal of the American Ceramic Society, vol. 50, pp. 288-290, 1967.
[39] M. J. Readey, R. R. Lee, J. W. Halloran, and A. H. Heuer, "Processing and Sintering of Ultrafine MgO‐ZrO2 and (MgO, Y2O3)‐ZrO2 Powders," Journal of the American Ceramic Society, vol. 73, pp. 1499-1503, 1990.
[40] R. H. Hannink, "Microstructural development of sub-eutectoid aged MgO-ZrO2 alloys," Journal of Materials Science, vol. 18, pp. 457-470, 1983.
[41] D. Viechnicki and V. S. Stubican, "Mechanism of Decomposition of the Cubic Solid Solutions in the System ZrO2—MgO," Journal of the American Ceramic Society, vol. 48, pp. 292-297, 1965.
[42] Y. Nagai, T. Yamamoto, T. Tanaka, S. Yoshida, T. Nonaka, T. Okamoto, et al., "X-ray absorption fine structure analysis of local structure of CeO2–ZrO2 mixed oxides with the same composition ratio (Ce/Zr= 1)," Catalysis Today, vol. 74, pp. 225-234, 2002.
[43] B. M. Reddy, A. Khan, Y. Yamada, T. Kobayashi, S. Loridant, and J.-C. Volta, "Raman and X-ray photoelectron spectroscopy study of CeO2-ZrO2 and V2O5/CeO2-ZrO2 catalysts," Langmuir, vol. 19, pp. 3025-3030, 2003.
[44] H. Zhu, "CeO1. 5-stabilized tetragonal ZrO2," Journal of materials science, vol. 29, pp. 4351-4356, 1994.
[45] R. M. Horton, A. J. Haslam, A. Galindo, G. Jackson, and M. W. Finnis, "New methods for calculating the free energy of charged defects in solid electrolytes," Journal of Physics: Condensed Matter, vol. 25, p. 395001, 2013.
[46] F. Fonseca, E. Muccillo, and R. Muccillo, "Analysis of the formation of ZrO2: Y2O3 solid solution by the electrochemical impedance spectroscopy technique," Solid State Ionics, vol. 149, pp. 309-318, 2002.
[47] C. B. Cao, J. T. Wang, W. J. Yu, D. K. Peng, and G. Y. Meng, "Research on YSZ thin films prepared by plasma-CVD process," Thin solid films, vol. 249, pp. 163-167, 1994.
[48] I. Abraham and G. Gritzner, "Powder preparation, mechanical and electrical properties of cubic zirconia ceramics," Journal of the European Ceramic Society, vol. 16, pp. 71-77, 1996.
[49] X. Xin, Z. Lü, Z. Ding, X. Huang, Z. Liu, X. Sha, et al., "Synthesis and characteristics of nanocrystalline YSZ by homogeneous precipitation and its electrical properties," Journal of alloys and compounds, vol. 425, pp. 69-75, 2006.
[50] T. Okubo and H. Nagamoto, "Low-temperature preparation of nanostructured zirconia and YSZ by sol-gel processing," Journal of materials science, vol. 30, pp. 749-757, 1995.
[51] C. Laberty-Robert, F. Ansart, S. Castillo, and G. Richard, "Synthesis of YSZ powders by the sol-gel method: surfactant effects on the morphology," Solid state sciences, vol. 4, pp. 1053-1059, 2002.
[52] G. Dell'Agli and G. Mascolo, "Hydrothermal synthesis of ZrO2–Y2O3 solid solutions at low temperature," Journal of the European Ceramic Society, vol. 20, pp. 139-145, 2000.
[53] C. Guiot, S. Grandjean, S. Lemonnier, J.-P. Jolivet, and P. Batail, "Nano single crystals of yttria-stabilized zirconia," Crystal Growth and Design, vol. 9, pp. 3548-3550, 2009.
[54] Y. Khollam, A. Deshpande, A. Patil, H. Potdar, S. Deshpande, and S. Date, "Synthesis of yttria stabilized cubic zirconia (YSZ) powders by microwave-hydrothermal route," Materials chemistry and physics, vol. 71, pp. 235-241, 2001.
[55] L. Combemale, G. Caboche, D. Stuerga, and D. Chaumont, "Microwave synthesis of yttria stabilized zirconia," Materials research bulletin, vol. 40, pp. 529-536, 2005.
[56] K. Vernieuwe, P. Lommens, J. C. Martins, F. Van Den Broeck, I. Van Driessche, and K. De Buysser, "Aqueous ZrO2 and YSZ Colloidal Systems through Microwave Assisted Hydrothermal Synthesis," Materials, vol. 6, pp. 4082-4095, 2013.
[57] S. He, H. Hou, and W. Chen, "3D porous and ultralight carbon hybrid nanostructure fabricated from carbon foam covered by monolayer of nitrogen-doped carbon nanotubes for high performance supercapacitors," Journal of Power Sources, vol. 280, pp. 678-686, 2015.
[58] Y. Zhu, S. Murali, M. D. Stoller, K. Ganesh, W. Cai, P. J. Ferreira, et al., "Carbon-based supercapacitors produced by activation of graphene," Science, vol. 332, pp. 1537-1541, 2011.
[59] A. Pandolfo and A. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of power sources, vol. 157, pp. 11-27, 2006.
[60] Z. Chen, V. Augustyn, X. Jia, Q. Xiao, B. Dunn, and Y. Lu, "High-performance sodium-ion pseudocapacitors based on hierarchically porous nanowire composites," ACS nano, vol. 6, pp. 4319-4327, 2012.
[61] J. M. Li, K. H. Chang, T. H. Wu, and C. C. Hu, "Microwave-assisted hydrothermal synthesis of vanadium oxides for Li-ion supercapacitors: The influences of Li-ion doping and crystallinity on the capacitive performances," Journal of Power Sources, vol. 224, pp. 59-65, 2013.
[62] J. M. Li, K. H. Chang, and C. C. Hu, "A novel vanadium oxide deposit for the cathode of asymmetric lithium-ion supercapacitors," Electrochemistry Communications, vol. 12, pp. 1800-1803, 2010.
[63] J. Shao, X. Li, Q. Qu, and H. Zheng, "One-step hydrothermal synthesis of hexangular starfruit-like vanadium oxide for high power aqueous supercapacitors," Journal of Power Sources, vol. 219, pp. 253-257, 2012.
[64] A. J. Bard and L. R. Faulkner, Electrochemical methods: fundamentals and applications vol. 2: Wiley New York, 1980.
[65] H. Jerominek, F. Picard, and D. Vincent, "Vanadium oxide films for optical switching and detection," Optical Engineering, vol. 32, pp. 2092-2099, 1993.
[66] J. H. Park, J. M. Coy, T. S. Kasirga, C. Huang, Z. Fei, S. Hunter, et al., "Measurement of a solid-state triple point at the metal-insulator transition in VO2," Nature, vol. 500, pp. 431-434, 2013.
[67] J. f. Liu, X. Wang, Q. Peng, and Y. Li, "Vanadium pentoxide nanobelts: highly selective and stable ethanol sensor materials," Advanced Materials, vol. 17, pp. 764-767, 2005.
[68] B. Li, Y. Xu, G. Rong, M. Jing, and Y. Xie, "Vanadium pentoxide nanobelts and nanorolls: from controllable synthesis to investigation of their electrochemical properties and photocatalytic activities," Nanotechnology, vol. 17, p. 2560, 2006.
[69] Y. Wang, Z. Zhang, Y. Zhu, Z. Li, R. Vajtai, L. Ci, et al., "Nanostructured VO2 photocatalysts for hydrogen production," Acs Nano, vol. 2, pp. 1492-1496, 2008.
[70] Q. Qu, L. Liu, Y. Wu, and R. Holze, "Electrochemical behavior of V2O5• 0.6H2O nanoribbons in neutral aqueous electrolyte solution," Electrochimica Acta, vol. 96, pp. 8-12, 2013.
[71] Y. Wang, K. Takahashi, K. H. Lee, and G. Cao, "Nanostructured Vanadium Oxide Electrodes for Enhanced Lithium‐Ion Intercalation," Advanced Functional Materials, vol. 16, pp. 1133-1144, 2006.
[72] V. Legagneur, A. L. G. La Salle, A. Verbaere, Y. Piffard, and D. Guyomard, "New layered vanadium oxides MyH1− yV3O8• nH2O (M= Li, Na, K) obtained by oxidation of the precursor H2V3O8," Journal of Materials Chemistry, vol. 10, pp. 2805-2810, 2000.
[73] H. Y. Lee and J. Goodenough, "Ideal supercapacitor behavior of amorphous V2O5•nH2O in potassium chloride (KCl) aqueous solution," Journal of Solid State Chemistry, vol. 148, pp. 81-84, 1999.
[74] B. Saravanakumar, K. K. Purushothaman, and G. Muralidharan, "Interconnected V2O5 nanoporous network for high-performance supercapacitors," ACS applied materials & interfaces, vol. 4, pp. 4484-4490, 2012.
[75] R. N. Reddy and R. G. Reddy, "Porous structured vanadium oxide electrode material for electrochemical capacitors," Journal of Power Sources, vol. 156, pp. 700-704, 2006.
[76] C. C. Hu, C. M. Huang, and K. H. Chang, "Anodic deposition of porous vanadium oxide network with high power characteristics for pseudocapacitors," Journal of Power Sources, vol. 185, pp. 1594-1597, 2008.
[77] C. C. Hu and K. H. Chang, "Hydrothermal Synthesis of V2O5⋅ 1.9H2O Single Crystals with Novel Electrochemical Characteristics," Electrochemical and solid-state letters, vol. 7, pp. A400-A403, 2004.
[78] E. Khoo, J. Wang, J. Ma, and P. S. Lee, "Electrochemical energy storage in a β-Na0.33V2O5 nanobelt network and its application for supercapacitors," Journal of Materials Chemistry, vol. 20, pp. 8368-8374, 2010.
[79] J. Galy, J. Darriet, A. Casalot, and J. Goodenough, "Structure of the MxV2O5-β and MxV2−yTyO5-β phases," Journal of Solid State Chemistry, vol. 1, pp. 339-348, 1970.
[80] L. Q. Mai, W. Chen, Q. Xu, J. F. Peng, and Q. Y. Zhu, "Mo doped vanadium oxide nanotubes: microstructure and electrochemistry," Chemical physics letters, vol. 382, pp. 307-312, 2003.
[81] C. H. Lai, C. K. Lin, S. W. Lee, H. Y. Li, J. K. Chang, and M. J. Deng, "Nanostructured Na-doped vanadium oxide synthesized using an anodic deposition technique for supercapacitor applications," Journal of Alloys and Compounds, vol. 536, pp. S428-S431, 2012.
[82] S. Komarneni, Q. Li, K. M. Stefansson, and R. Roy, "Microwave-hydrothermal processing for synthesis of electroceramic powders," Journal of materials research, vol. 8, pp. 3176-3183, 1993.
[83] D. Yu, C. Chen, S. Xie, Y. Liu, K. Park, X. Zhou, et al., "Mesoporous vanadium pentoxide nanofibers with significantly enhanced Li-ion storage properties by electrospinning," Energy & Environmental Science, vol. 4, pp. 858-861, 2011.
[84] C. Graves, S. D. Ebbesen, and M. Mogensen, "Co-electrolysis of CO2 and H2O in solid oxide cells: Performance and durability," Solid State Ionics, vol. 192, pp. 398-403, 2011.
[85] M. Laguna-Bercero, "Recent advances in high temperature electrolysis using solid oxide fuel cells: A review," Journal of Power sources, vol. 203, pp. 4-16, 2012.
[86] Y. Arachi, H. Sakai, O. Yamamoto, Y. Takeda, and N. Imanishai, "Electrical conductivity of the ZrO2–Ln2O3 (Ln= lanthanides) system," Solid State Ionics, vol. 121, pp. 133-139, 1999.
[87] G. E. Box, W. G. Hunter, and J. S. Hunter, "Statistics for experimenters," 1978.
[88] 孫永欣, 趙青, 劉力, 常愛民, 文彬, 楊忠波, et al., "微波水熱合成 ZrO2-8% Y2O3 纳米粉体," 矽酸鹽學報, vol. 33, pp. 1255-1258, 2006.
[89] 趙靜, "钇稳定氧化锆粉体製備及氧傳感特性研究," 哈爾濱工程大學, 2011.
[90] 黎正中 and 陳源樹, "實驗設計與分析," 高立圖書, 台北市, 1998.
[91] 陳. 伊衍升, 劉英才, "氧化鋯陶瓷的掺雜稳定及生長動力学," 北京:化学工业出版社, pp. 84-90, 2004.
[92] 祝寶軍, 陶穎, 蒋東, 賈漢友, 孔晨光, and 黄詩婷, "水熱合成奈米氧化鋯工藝研究," 硬質合金, vol. 25, pp. 91-94, 2008.
[93] Y. Zhang, G. Xu, Z. Yan, Y. Yang, C. Liao, and C. Yan, "Nanocrystalline rare earth stabilized zirconia: solvothermal synthesis via heterogeneous nucleation-growth mechanism, and electrical properties," Journal of Materials Chemistry, vol. 12, pp. 970-977, 2002.
[94] X. Chen, K. Khor, S. Chan, and L. Yu, "Influence of microstructure on the ionic conductivity of yttria-stabilized zirconia electrolyte," Materials Science and Engineering: A, vol. 335, pp. 246-252, 2002.
[95] H. Li, T. Zhai, P. He, Y. Wang, E. Hosono, and H. Zhou, "Single-crystal H2V3O8 nanowires: a competitive anode with large capacity for aqueous lithium-ion batteries," Journal of Materials Chemistry, vol. 21, pp. 1780-1787, 2011.
[96] M. Simões, Y. Mettan, S. Pokrant, and A. Weidenkaff, "Surface-Modified Lithiated H2V3O8: A Stable High Energy Density Cathode Material for Lithium-Ion Batteries with LiPF6 Electrolytes," The Journal of Physical Chemistry C, vol. 118, pp. 14169-14176, 2014.
[97] J. M. Li, K. H. Chang, and C. C. Hu, "The key factor determining the anodic deposition of vanadium oxides," Electrochimica Acta, vol. 55, pp. 8600-8605, 2010.
[98] R. Lindström, V. Maurice, S. Zanna, L. Klein, H. Groult, L. Perrigaud, et al., "Thin films of vanadium oxide grown on vanadium metal: oxidation conditions to produce V2O5 films for Li‐intercalation applications and characterisation by XPS, AFM, RBS/NRA," Surface and interface analysis, vol. 38, pp. 6-18, 2006.
[99] G. Wang, X. Lu, Y. Ling, T. Zhai, H. Wang, Y. Tong, et al., "LiCl/PVA gel electrolyte stabilizes vanadium oxide nanowire electrodes for pseudocapacitors," ACS nano, vol. 6, pp. 10296-10302, 2012.
[100] Y. Oka, T. Yao, and N. Yamamoto, "Structure determination of H2V3O8 by powder X-ray diffraction," Journal of Solid State Chemistry, vol. 89, pp. 372-377, 1990.
[101] V. Legagneur, A. L. G. La Salle, A. Verbaere, Y. Piffard, and D. Guyomard, "Lithium insertion/deinsertion properties of new layered vanadium oxides obtained by oxidation of the precursor H2V3O8," Electrochimica acta, vol. 47, pp. 1153-1161, 2002.
[102] M. Y. Song, S. Chin, J. Jurng, and Y.-K. Park, "One step simultaneous synthesis of modified-CVD-made V2O5/TiO2 nanocomposite particles," Ceramics International, vol. 38, pp. 2613-2618, 2012.