研究生: |
田雅德 Ya-Te Tain |
---|---|
論文名稱: |
電子吸收式調變器與分佈迴授式雷射二極體之積體化製程及特性分析 Fabrication and characterizations of EA-modulator-integrated DFB Laser Diodes |
指導教授: |
吳孟奇 博士
Dr. Meng-Cheng Wu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 電子工程研究所 Institute of Electronics Engineering |
論文出版年: | 2000 |
畢業學年度: | 88 |
語文別: | 中文 |
論文頁數: | 100 |
中文關鍵詞: | Distributed Feedback Laser 、電子吸收式的光調變器 |
外文關鍵詞: | Distributed Feedback Laser, DFB Laser, Electroabsorption Modulator, EA Modulator, butt-jointed, InGaAsP/InP |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
對於超過一百公里長距離的光纖通訊系統而言,低色散及低損耗的光源是必備的條件。所以電子吸收式的光調變器(Electroabsorption Modulator;EA)與分佈迴授式的雷射 (Distributed Feedback Laser) 的積體化所產生的訊號源是最為理想的訊號源。本論文即是以butt-jointed 的技術實踐積體化訊號源。我們採用磷化銦鎵砷 (InGaAsP) 為主動層成長在磷化銦 (InP) 的基板上作為分佈迴授式雷射作為光源,波長定在1.55μm。在電子吸收式光調變器方面,我們採用與分佈迴授式雷射部分相似的結構,不過在多重量子井 (Multi quantum-well;MQW) 的部分稍做改變,使波長定在1.50μm以便做為信號調變用。
單獨的分佈迴授式雷射之光頻譜旁模壓抑比 side mode suppression ratio;SMSR) 為32dB。發光-電流 (light-current;L-I;Ith) 曲線之臨界電流為52mA。光電轉換效率 (slope-efficiency;SE) 為0.18。積體化後相關的數據分別為SMSR=30dB,Ith=65mA,SE=0.05,消光比 (Extinction ratio) 為-5.51 dB,耦合效率 (coupling effect) 約為0.6。
在本文中,我們可以看出積體化後,臨界電流、光電轉換效率、光頻譜旁模壓抑比均下降,我們可以由結構、製程、磊晶技術上著手加以改善使其達到未來的目標,就現階段而言我們已經將訊號源大小以及調變方式上做大幅的改良,已經達到靜態調變目標。
For the distance more than 100 kilometer fiber communication system, low dispersion and intrinsic attenuation is necessary. So the EA modulator integrated DFB Laser is more ideal. In this thesis, we used butt-jointed technology to fabricate integration single source. We used 1.55mm InGaAsP for active layer growth on InP substrate . For electroabsorption modulator part, the structure is similar to DFB Laser. We changed the wavelength muti quantum- well . The wavelength is 1.50mm for single modulate.
We have successfully fabricated external modulate Laser (EML) with extinction ratio of -5.51dB, coupling effect of 0.6, side mode suppression ratio (SMSR) of 30dB, light-current threshold current of 65 mA and slop efficiency (S.E.) of 0.05. We also measured the only DFB Laser part with side mode suppression ratio (SMSR) of 32dB, light-current threshold current of 52 mA and slop efficiency (S.E.) of 0.18.
After integration, although the threshold current、S.E.、SMSR were reduce. We can improve them in structure, fabricate and crystal growth three part three way. In present we have arrived the static modulate stage.
[1] H. Soda, Y. Kotaki, H. Ishikawa, S. Yamakoshi, and H. Imai, "Stability
in Single Mode Operation in GaInAsP/InP Phase Adjusted DFB
Lasers," IEEE J. Quantum Electron., vol. 23, pp. 804~814, 1987.
[2] Y. Nakano, Y. Luo, and K. Tada, "Facet Reflection Independent, Single
Longitudinal Mode Oscillation in a GaAlAs/GaAs Distributed
Feedback Laser Equipped with a Gain-Coupling Mechanism," Appl.
Phys. Lett., vol. 55, pp. 1606~1608, 1989.
[3] H. Kogelnik, and C. V. Shank, "Coupled-Wave Theory of Distributed
Feedback Lasers," J. Appl. Phys., vol. 43, pp. 2327~2335, 1972.
[4]中華電信研究所論文集
[5] Larry A. Coldren and Scott W. Corzine, "Diode Lasers and Photonic
Integrated Circuit" Chap.3~6
[6] P. Bhattacharya "Semiconductor optoelectronic Device" Chap.3
[7] Olof Sahlen "Optimzation of DFB Lasers Integrated with Franz-
Keldysh Absorption Modulators",J. of Lightwave Technology, vol12,
no.6,Iune 1994.
[8] G. P. Agrawal, and N. K. Dutta, "Semiconductor Lasers," 2nd ed., pp.
450~455, Van Nostrand Reinhold, New York.
[9] C. P. Kuo, S. K. Vong, R. M. Cohen, and G. B. Stringfellow, "Effect of
Strain on Band Gap in III-V Semiconductors," J. Appl. Phys., vol. 57,
pp. 5428~5432, 1985.
[10] S. H. Park, "High Temperature Characteristics of Strained InGaAs /
InGaAlAs Quantum Well Lasers," Jpn. J. Appl. Phys., vol. 36, pp.
3528~3530, 1997.
[11] S. D. Hersee, B. de Cremoux, and J. P. Duchemin, "Some
Characteristics of the GaAs/GaAlAs Graded-Index Separate-
Confinement Heterostructure Quantum Well Laser Structure," Appl.
Phys. Lett., vol. 44, pp. 476~478, 1984.
[12] J. Hong, H. Kim, and T. Makino, " Enhanced Wavelength Tuning
Range in Two-Section Complex-Coupled DFB Lasers by Alternating
Gain and Loss Coupling," J. Lightwave Technol., vol. 16, pp.
1323~1328, 1998.
[13] J. Zoz, T. W. Johannes, A. Rast, B. Borchert, U. Barabas, and W.
Harth,"Dynamics and Stability of Complex-Coupled DFB Lasers with
Absorptive Gratings," IEEE J. Quantum Electron., vol. 31, pp.
1432~1442, 1995.
[14] C. Kazmierski, D. Robein, D. Mathoorasing, A. Ougazzaden, and M.
Filoche, " 1.5 mm DFB Lasers with New Current Induced Gain
Gratings," presented at the Semiconduct. Laser Conf., Maui, HI, 1994.
[15] C. Y. Wang, H. P. Shiao, Z. M. Chuang, H. H. Liao, and C. T. Lee,
"Wide Temperature Range Operation of 1.55mm Current-Blocking
Grating Complex-Coupled DFB Laser," Electron. Lett., vol. 33, pp.
1712~1713, 1997.
[16] H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M.
Yoneyama, and T. Otsuji "Very Hig-Speed Light-Source Module up to
40 Gb/s Containing an MQW Electroabsorption Modulator Integrated
with aDFB Laser" IEEE J. of Selected Topics in Quantum Electronics,
vol. 3, no. 2, pp.336~343, April 1997
[17] H. Takeuchi, K. Tsuzuki, K. Sato, M. Yamamoto, Y. Itaya, A. Sano, M.
Yoneyama, and T. Otsuji "NRZ Operation at 40Gb/s of Compact
Module Containing an MQW Electroabsorption Modulator Integrated
with DFB Laser" IEEE Photo. Technol. Lett, vol.9, no.5, pp572~574,
May 1997
[18] B. Stoltz, M. Dasler and O. Sahlen "Low Threshold-Current, Wide
Tunning-range, Butt-joint DBR Laser Grown with Four MOVPE
Steps" Electron. Lett., vol29, no.8, pp700~702, 15th, April, 1933
[19] H.Soda, K. Nakai and H. Ishikwa "Frequency Response of an Optical
Intensity Modulator Monolithically Integrated with a DFB Laser"
Fujitsu Laboratories Ltd. pp227~230