簡易檢索 / 詳目顯示

研究生: 曾麗馨
Tseng, Li-Hsin
論文名稱: 製備二氧化錳/活性碳/石墨烯複合電極及其在超級電容之應用
Syntheses of Manganese Dioxide/Activated Carbon/Graphene Composite Electrodes and Their Applications in Supercapacitors
指導教授: 戴念華
Tai, Nyan-Hwa
口試委員: 李紫原
Lee, Chi-Young
林建宏
Lin, Jarrn-Horng
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2017
畢業學年度: 105
語文別: 中文
論文頁數: 94
中文關鍵詞: 石墨烯活性碳二氧化錳複合電極超級電容
外文關鍵詞: graphene, activated carbon, manganese dioxide, composite electrodes, supercapacitor
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用化學氣相沉積法,在三維網狀發泡鎳上成長石墨烯,並在其上浸鍍活性碳,做不同維度碳材料的複合,接著利用自限成長(self-limiting growth)的方式,以過錳酸鉀和碳材料之間的氧化還原反應沉積二氧化錳並控制二氧化錳沉積量,得到多層次孔洞結構之二氧化錳/活性碳/石墨烯複合電極。
    此外,探討純碳材料以電雙層電容儲能機制,以及複合了具電雙層特性之碳材料及具擬電容特性之二氧化錳之電容值表現,同時藉由調控過錳酸鉀濃度,控制二氧化錳沉積量,討論不同濃度下複合電極的電容特性,電流密度1 A/g下,得到的最佳電容值為813.0 F/g,且電極擁有良好的循環穩定度,在1000個循環後,仍保留98.4%之電容值。
    最後,以二氧化錳/活性碳/石墨烯複合電極組裝對稱固態超級電容,其能量密度為33.9 Wh/kg,功率密度為319.3 W/kg,說明此種複合電極具有應用於超級電容之潛力。


    In this work, three dimensional graphene was synthesized by the chemical vapor deposition method using nickel foam as a template. Activated carbon was dip-coated with graphene to combine carbon materials of different dimensions. Subsequently, MnO2/activated carbon/graphene composite electrodes with hierarchical pore structure and controllable MnO2 loading were synthesized using a self-limiting growth method; this was achieved by redox reactions of KMnO4 on sacrificial carbon materials.
    Furthermore, the capacitances between the carbon-only electrodes and the MnO2/carbon composite electrodes were compared. The former one are normally electrochemical double-layer capacitors, nevertheless, the latter one also show pseudocapacitive properties. The optimum MnO2/activated carbon/graphene composite electrode exhibited a specific capacitance of 813.0 F/g at a current density of 1 A/g, as well as good stability of 98.4% capacitance retention after 1000 cycles.
    When the symmetric solid-state supercapacitor was built from MnO2/activated carbon/graphene composite electrodes, it showed an energy density of 33.9 Wh/kg and a power density of 319.3 W/kg. Results of the feasibility tests indicate that the composite electrodes can be promising for supercapacitor applications.

    摘要 I Abstract II 誌謝 III 目錄 IV 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 第二章 文獻回顧 3 2.1 超級電容 3 2.1.1 電荷儲存機制 4 2.1.2 電極材料 7 2.1.3 電解液 9 2.1.4 電極材料評估與電容計算 10 2.2 石墨烯之介紹 13 2.2.1石墨烯之結構與性質 13 2.2.2石墨烯之製備方法 14 2.3 活性碳之介紹 18 2.4 二氧化錳之介紹 21 2.4.1 二氧化錳之性質與結構 21 2.4.2 二氧化錳之製備方法 22 2.4.3 二氧化錳於超級電容中之反應機制 27 第三章 實驗方法與分析 36 3.1 實驗藥品 36 3.2 實驗步驟 36 3.2.1 發泡鎳(NF)前處理 36 3.2.2石墨烯/發泡鎳(G/NF)複合電極之製備 37 3.2.3 活性碳/石墨烯/發泡鎳(AC/G/NF)複合電極之製備 38 3.2.4 二氧化錳/活性碳/石墨烯/發泡鎳(MnO2/AC/G/NF)複合電極之製備 38 3.2.5 固態超級電容(solid-state supercapacitor)組裝 39 3.3 實驗所需儀器 39 3.4 試片之性質分析 40 3.4.1 X光繞射儀 41 3.4.2 拉曼光譜儀 41 3.4.3 場發射掃描式電子顯微鏡 41 3.4.4高分辨穿透式電子顯微鏡 42 3.4.5 X射線光電子能譜儀 43 3.5 試片之電化學分析 43 3.5.1 循環伏安測試 44 3.5.2 恆電流充放電測試 44 3.5.3 電化學阻抗頻譜測試 45 第四章 結果與討論 50 4.1 二氧化錳/活性碳/石墨烯/發泡鎳複合電極之分析 50 4.1.1 X光繞射光譜之晶體結構分析 50 4.1.2 拉曼光譜之晶體結構分析 51 4.1.3 掃描式電子顯微鏡之形貌分析 52 4.1.4 高分辨穿透式電子顯微鏡之微結構分析 54 4.1.5 能量散布光譜儀/X射線光電子能譜儀之元素與鍵結分析 55 4.2 二氧化錳/活性碳/石墨烯/發泡鎳複合電極之電化學特性分析 57 4.2.1 循環伏安測試分析 57 4.2.2 恆電流充放電測試分析 60 4.2.3 電化學阻抗頻譜測試分析 61 4.2.4 循環穩定度測試分析 62 4.2.5 固態超級電容可行性測試分析 63 第五章 結論 86 參考文獻 88  

    [1] C. Xu, F. Kang, B. Li, and H. Du, "Recent progress on manganese dioxide based supercapacitors," Journal of Materials Research, vol. 25, pp. 1421-1432, 2010.
    [2] R. Kötz and M. Carlen, "Principles and applications of electrochemical capacitors," Electrochimica Acta, vol. 45, pp. 2483-2498, 2000.
    [3] S. Bose, T. Kuila, A. K. Mishra, R. Rajasekar, N. H. Kim, and J. H. Lee, "Carbon-based nanostructured materials and their composites as supercapacitor electrodes," Journal of Materials Chemistry, vol. 22, pp. 767-784, 2012.
    [4] P. Simon and Y. Gogotsi, "Materials for electrochemical capacitors," Nature Materials, vol. 7, pp. 845-854, 2008.
    [5] J. R. Miller and P. Simon, "Electrochemical capacitors for energy management," Science, vol. 321, pp. 651-652, 2008.
    [6] K. Jost, G. Dion, and Y. Gogotsi, "Textile energy storage in perspective," Journal of Materials Chemistry A, vol. 2, pp. 10776-10787, 2014.
    [7] L. L. Zhang and X. S. Zhao, "Carbon-based materials as supercapacitor electrodes," Chemical Society Reviews, vol. 38, pp. 2520-2531, 2009.
    [8] L. L. Zhang, R. Zhou, and X. Zhao, "Graphene-based materials as supercapacitor electrodes," Journal of Materials Chemistry, vol. 20, pp. 5983-5992, 2010.
    [9] G. Wang, L. Zhang, and J. Zhang, "A review of electrode materials for electrochemical supercapacitors," Chemical Society Reviews, vol. 41, pp. 797-828, 2012.
    [10] B. E. Conway, Electrochemical supercapacitors: scientific fundamentals and technological applications: Springer US, 2013.
    [11] P. Simon, Y. Gogotsi, and B. Dunn, "Where Do Batteries End and Supercapacitors Begin?," Science, vol. 343, pp. 1210-1211, 2014.
    [12] M. Zhi, F. Yang, F. Meng, M. Li, A. Manivannan, and N. Wu, "Effects of pore structure on performance of an activated-carbon supercapacitor electrode recycled from scrap waste tires," ACS Sustainable Chemistry & Engineering, vol. 2, pp. 1592-1598, 2014.
    [13] E. Redondo, J. Carretero-González, E. Goikolea, J. Ségalini, and R. Mysyk, "Effect of pore texture on performance of activated carbon supercapacitor electrodes derived from olive pits," Electrochimica Acta, vol. 160, pp. 178-184, 2015.
    [14] J. Y. Hwang, M. Li, M. F. El‐Kady, and R. B. Kaner, "Next‐Generation Activated Carbon Supercapacitors: A Simple Step in Electrode Processing Leads to Remarkable Gains in Energy Density," Advanced Functional Materials, pp. 1-9, 2017.
    [15] T. Zhang, C. H. Kim, Y. Cheng, Y. Ma, H. Zhang, and J. Liu, "Making a commercial carbon fiber cloth having comparable capacitances to carbon nanotubes and graphene in supercapacitors through a “top-down” approach," Nanoscale, vol. 7, pp. 3285-3291, 2015.
    [16] Y. Huang, Y. Liu, G. Zhao, and J. Y. Chen, "Sustainable activated carbon fiber from sawdust by reactivation for high-performance supercapacitors," Journal of Materials Science, vol. 52, pp. 478-488, 2017.
    [17] R. Lv, E. Cruz-Silva, and M. Terrones, "Building complex hybrid carbon architectures by covalent interconnections: graphene–nanotube hybrids and more," ACS Nano, vol. 8, pp. 4061-4069, 2014.
    [18] T. Chen, H. Peng, M. Durstock, and L. Dai, "High-performance transparent and stretchable all-solid supercapacitors based on highly aligned carbon nanotube sheets," Scientific Reports, vol. 4, pp. 3612, 2014.
    [19] J. Hu, Z. Kang, F. Li, and X. Huang, "Graphene with three-dimensional architecture for high performance supercapacitor," Carbon, vol. 67, pp. 221-229, 2014.
    [20] Z.-Y. Sui, Y.-N. Meng, P.-W. Xiao, Z.-Q. Zhao, Z.-X. Wei, and B.-H. Han, "Nitrogen-doped graphene aerogels as efficient supercapacitor electrodes and gas adsorbents," ACS Applied Materials & Interfaces, vol. 7, pp. 1431-1438, 2015.
    [21] G. A. Snook, P. Kao, and A. S. Best, "Conducting-polymer-based supercapacitor devices and electrodes," Journal of Power Sources, vol. 196, pp. 1-12, 2011.
    [22] H. Yu, J. Wu, L. Fan, Y. Lin, K. Xu, Z. Tang, et al., "A novel redox-mediated gel polymer electrolyte for high-performance supercapacitor," Journal of Power Sources, vol. 198, pp. 402-407, 2012.
    [23] Y.-Z. Su, K. Xiao, N. Li, Z.-Q. Liu, and S.-Z. Qiao, "Amorphous Ni (OH)2@ three-dimensional Ni core–shell nanostructures for high capacitance pseudocapacitors and asymmetric supercapacitors," Journal of Materials Chemistry A, vol. 2, pp. 13845-13853, 2014.
    [24] J. Liu, L. Zhang, H. B. Wu, J. Lin, Z. Shen, and X. W. D. Lou, "High-performance flexible asymmetric supercapacitors based on a new graphene foam/carbon nanotube hybrid film," Energy & Environmental Science, vol. 7, pp. 3709-3719, 2014.
    [25] S.-M. Chen, R. Ramachandran, V. Mani, and R. Saraswathi, "Recent advancements in electrode materials for the high performance electrochemical supercapacitors: a review," Int. J. Electrochem. Sci, vol. 9, pp. 4072-4085, 2014.
    [26] J. Zhang and X. Zhao, "On the configuration of supercapacitors for maximizing electrochemical performance," ChemSusChem, vol. 5, pp. 818-841, 2012.
    [27] J.-G. Wang, Y. Yang, Z.-H. Huang, and F. Kang, "A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes," Carbon, vol. 61, pp. 190-199, 2013.
    [28] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, et al., "Electric field effect in atomically thin carbon films," Science, vol. 306, pp. 666-669, 2004.
    [29] A. K. Geim and K. S. Novoselov, "The rise of graphene," Nature Materials, vol. 6, pp. 183-191, 2007.
    [30] A. C. Neto, F. Guinea, N. M. Peres, K. S. Novoselov, and A. K. Geim, "The electronic properties of graphene," Reviews of Modern Physics, vol. 81, pp. 109, 2009.
    [31] C. Berger, Z. Song, T. Li, X. Li, A. Y. Ogbazghi, R. Feng, et al., "Ultrathin epitaxial graphite: 2D electron gas properties and a route toward graphene-based nanoelectronics," The Journal of Physical Chemistry B,vol. 108, pp. 19912-19916, 2004.
    [32] C. K. Chua and M. Pumera, "Reduction of graphene oxide with substituted borohydrides," Journal of Materials Chemistry A, vol. 1, pp. 1892-1898, 2013.
    [33] S. Park, Y. Hu, J. O. Hwang, E.-S. Lee, L. B. Casabianca, W. Cai, et al., "Chemical structures of hydrazine-treated graphene oxide and generation of aromatic nitrogen doping," Nature Communications, vol. 3, pp. 638, 2012.
    [34] J. H. Lee, N. Park, B. G. Kim, D. S. Jung, K. Im, J. Hur, et al., "Restacking-inhibited 3D reduced graphene oxide for high performance supercapacitor electrodes," ACS Nano, vol. 7, pp. 9366-9374, 2013.
    [35] S. Pei and H.-M. Cheng, "The reduction of graphene oxide," Carbon, vol. 50, pp. 3210-3228, 2012.
    [36] Y. Zhang, L. Zhang, and C. Zhou, "Review of chemical vapor deposition of graphene and related applications," Accounts of Chemical Research, vol. 46, pp. 2329-2339, 2013.
    [37] X. Li, W. Cai, J. An, S. Kim, J. Nah, D. Yang, et al., "Large-area synthesis of high-quality and uniform graphene films on copper foils," Science, vol. 324, pp. 1312-1314, 2009.
    [38] R. C. Bansal and M. Goyal, Activated carbon adsorption: CRC press, pp. 1-5, 2005.
    [39] A. Pandolfo and A. Hollenkamp, "Carbon properties and their role in supercapacitors," Journal of Power Sources, vol. 157, pp. 11-27, 2006.
    [40] C. Largeot, C. Portet, J. Chmiola, P.-L. Taberna, Y. Gogotsi, and P. Simon, "Relation between the ion size and pore size for an electric double-layer capacitor," Journal of the American Chemical Society, vol. 130, pp. 2730-2731, 2008.
    [41] A. Davies and A. Yu, "Material advancements in supercapacitors: from activated carbon to carbon nanotube and graphene," The Canadian Journal of Chemical Engineering, vol. 89, pp. 1342-1357, 2011.
    [42] H. Y. Lee and J. B. Goodenough, "Supercapacitor behavior with KCl electrolyte," Journal of Solid State Chemistry, vol. 144, pp. 220-223, 1999.
    [43] V. Augustyn, P. Simon, and B. Dunn, "Pseudocapacitive oxide materials for high-rate electrochemical energy storage," Energy & Environmental Science, vol. 7, pp. 1597-1614, 2014.
    [44] S. Devaraj and N. Munichandraiah, "Effect of crystallographic structure of MnO2 on its electrochemical capacitance properties," The Journal of Physical Chemistry C, vol. 112, pp. 4406-4417, 2008.
    [45] T. Brousse, M. Toupin, R. Dugas, L. Athouël, O. Crosnier, and D. Bélanger, "Crystalline MnO2 as possible alternatives to amorphous compounds in electrochemical supercapacitors," Journal of The Electrochemical Society, vol. 153, pp. A2171-A2180, 2006.
    [46] W. Wei, X. Cui, W. Chen, and D. G. Ivey, "Manganese oxide-based materials as electrochemical supercapacitor electrodes," Chemical society reviews, vol. 40, pp. 1697-1721, 2011.
    [47] Y. Wang, H. Liu, X. Sun, and I. Zhitomirsky, "Manganese dioxide–carbon nanotube nanocomposites for electrodes of electrochemical supercapacitors," Scripta Materialia, vol. 61, pp. 1079-1082, 2009.
    [48] C.-C. Hu and C.-C. Wang, "Nanostructures and capacitive characteristics of hydrous manganese oxide prepared by electrochemical deposition," Journal of the Electrochemical Society, vol. 150, pp. A1079-A1084, 2003.
    [49] H. Xia, J. Feng, H. Wang, M. O. Lai, and L. Lu, "MnO2 nanotube and nanowire arrays by electrochemical deposition for supercapacitors," Journal of Power Sources, vol. 195, pp. 4410-4413, 2010.
    [50] J. Wei, N. Nagarajan, and I. Zhitomirsky, "Manganese oxide films for electrochemical supercapacitors," Journal of Materials Processing Technology, vol. 186, pp. 356-361, 2007.
    [51] J. Wei and I. Zhitomirsky, "Electrosynthesis of manganese oxide films," Surface Engineering, vol. 24, pp. 40-46, 2008.
    [52] M.-W. Xu and S.-J. Bao, ''Nanostructured MnO2 for Electrochemical Capacitor,'' Energy Storage in the Emerging Era of Smart Grids. InTech, 2011.
    [53] M. Xu, L. Kong, W. Zhou, and H. Li, "Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins," The Journal of Physical Chemistry C, vol. 111, pp. 19141-19147, 2007.
    [54] X. Tang, H. Li, Z.-H. Liu, Z. Yang, and Z. Wang, "Preparation and capacitive property of manganese oxide nanobelt bundles with birnessite-type structure," Journal of Power Sources, vol. 196, pp. 855-859, 2011.
    [55] M. Huang, X. L. Zhao, F. Li, L. L. Zhang, and Y. X. Zhang, "Facile synthesis of ultrathin manganese dioxide nanosheets arrays on nickel foam as advanced binder-free supercapacitor electrodes," Journal of Power Sources, vol. 277, pp. 36-43, 2015.
    [56] Y. Peng, Z. Chen, J. Wen, Q. Xiao, D. Weng, S. He, et al., "Hierarchical manganese oxide/carbon nanocomposites for supercapacitor electrodes," Nano Research, vol. 4, pp. 216-225, 2011.
    [57] L. Li, Z. A. Hu, N. An, Y. Y. Yang, Z. M. Li, and H. Y. Wu, "Facile synthesis of MnO2/CNTs composite for supercapacitor electrodes with long cycle stability," The Journal of Physical Chemistry C, vol. 118, pp. 22865-22872, 2014.
    [58] D. W. Wang, F. Li, M. Liu, G. Q. Lu, and H. M. Cheng, "3D aperiodic hierarchical porous graphitic carbon material for high‐rate electrochemical capacitive energy storage," Angewandte Chemie International Edition, vol. 47, pp. 373-376, 2008.
    [59] J. Li and I. Zhitomirsky, "Electrophoretic deposition of manganese oxide nanofibers," Materials Chemistry and Physics, vol. 112, pp. 525-530, 2008.
    [60] J. Yan, Q. Wang, T. Wei, and Z. Fan, "Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities," Advanced Energy Materials, vol. 4, 2014.
    [61] P. Ragupathy, H. Vasan, and N. Munichandraiah, "Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies," Journal of the Electrochemical Society, vol. 155, pp. A34-A40, 2008.
    [62] Y. Wu, S. Liu, K. Zhao, Z. He, H. Yuan, K. Lv, et al., "Chemical deposition of MnO2 nanosheets on graphene-carbon nanofiber paper as free-standing and flexible electrode for supercapacitors," Ionics, vol. 22, pp. 1185-1195, 2016.
    [63] S. W. Lee, J. Kim, S. Chen, P. T. Hammond, and Y. Shao-Horn, "Carbon nanotube/manganese oxide ultrathin film electrodes for electrochemical capacitors," ACS Nano, vol. 4, pp. 3889-3896, 2010.
    [64] X. Liang and L. F. Nazar, "In situ reactive assembly of scalable core–shell sulfur–MnO2 composite cathodes," ACS Nano, vol. 10, pp. 4192-4198, 2016.
    [65] A. C. Ferrari, "Raman spectroscopy of graphene and graphite: disorder, electron–phonon coupling, doping and nonadiabatic effects," Solid State Communications, vol. 143, pp. 47-57, 2007.
    [66] C. Julien, M. Massot, R. Baddour-Hadjean, S. Franger, S. Bach, and J. Pereira-Ramos, "Raman spectra of birnessite manganese dioxides," Solid State Ionics, vol. 159, pp. 345-356, 2003.
    [67] S.-B. Ma, K.-Y. Ahn, E.-S. Lee, K.-H. Oh, and K.-B. Kim, "Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes," Carbon, vol. 45, pp. 375-382, 2007.
    [68] Y. He, W. Chen, X. Li, Z. Zhang, J. Fu, C. Zhao, et al., "Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes," ACS nano, vol. 7, pp. 174-182, 2012.
    [69] J. Duay, S. A. Sherrill, Z. Gui, E. Gillette, and S. B. Lee, "Self-limiting electrodeposition of hierarchical MnO2 and M(OH)2/MnO2 nanofibril/nanowires: mechanism and supercapacitor properties," ACS Nano, vol. 7, pp. 1200-1214, 2013.
    [70] S. J. Chae, F. Güneş, K. K. Kim, E. S. Kim, G. H. Han, S. M. Kim, et al., "Synthesis of large‐area graphene layers on poly‐nickel substrate by chemical vapor deposition: wrinkle formation," Advanced Materials, vol. 21, pp. 2328-2333, 2009.
    [71] X. Dong, X. Wang, J. Wang, H. Song, X. Li, L. Wang, et al., "Synthesis of a MnO2–graphene foam hybrid with controlled MnO2 particle shape and its use as a supercapacitor electrode," Carbon, vol. 50, pp. 4865-4870, 2012.
    [72] Y. Li, J. Wang, Y. Zhang, M. N. Banis, J. Liu, D. Geng, et al., "Facile controlled synthesis and growth mechanisms of flower-like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method," Journal of Colloid and Interface Science, vol. 369, pp. 123-128, 2012.
    [73] M. Toupin, T. Brousse, and D. Bélanger, "Charge storage mechanism of MnO2 electrode used in aqueous electrochemical capacitor," Chemistry of Materials, vol. 16, pp. 3184-3190, 2004.
    [74] A. P. Terzyk, "The influence of activated carbon surface chemical composition on the adsorption of acetaminophen (paracetamol) in vitro: Part II. TG, FTIR, and XPS analysis of carbons and the temperature dependence of adsorption kinetics at the neutral pH," Colloids and Surfaces A: Physicochemical and Engineering Aspects, vol. 177, pp. 23-45, 2001.
    [75] S. Ban, J. Zhang, L. Zhang, K. Tsay, D. Song, and X. Zou, "Charging and discharging electrochemical supercapacitors in the presence of both parallel leakage process and electrochemical decomposition of solvent," Electrochimica Acta, vol. 90, pp. 542-549, 2013.
    [76] D. Gueon and J. H. Moon, "MnO2 nanoflake-shelled carbon nanotube particles for high-performance supercapacitors," ACS Sustainable Chemistry & Engineering, vol. 5, pp. 2445-2453, 2017.
    [77] Y. Jin, H. Chen, M. Chen, N. Liu, and Q. Li, "Graphene-patched CNT/MnO2 nanocomposite papers for the electrode of high-performance flexible asymmetric supercapacitors," ACS Applied Materials & Interfaces, vol. 5, pp. 3408-3416, 2013.
    [78] Y. Cheng, S. Lu, H. Zhang, C. V. Varanasi, and J. Liu, "Synergistic effects from graphene and carbon nanotubes enable flexible and robust electrodes for high-performance supercapacitors," Nano Letters, vol. 12, pp. 4206-4211, 2012.
    [79] S. Kong, K. Cheng, T. Ouyang, Y. Gao, K. Ye, G. Wang, et al., "Facile dip coating processed 3D MnO2-graphene nanosheets/MWNT-Ni foam composites for electrochemical supercapacitors," Electrochimica Acta, vol. 226, pp. 29-39, 2017.
    [80] S. He, C. Hu, H. Hou, and W. Chen, "Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors," Journal of Power Sources, vol. 246, pp. 754-761, 2014.
    [81] T. Ouyang, K. Cheng, F. Yang, L. Zhou, K. Zhu, K. Ye, et al., "From biomass with irregular structures to 1D carbon nanobelts: A stripping and cutting strategy to fabricate high performance supercapacitor materials," Journal of Materials Chemistry A, 2017.

    QR CODE