研究生: |
翁政輝 Cheng-Hui Weng |
---|---|
論文名稱: |
單壁奈米碳管的合成及其機電、電子、光電性質之量測分析 Synthesis of Single-Walled Carbon Nanotubes and Characterizations of the Electromechanical, Electronic and Optoelectronic Properties |
指導教授: |
柳克強
Keh-Chyang Leou 蔡春鴻 Chuen-Horng Tsai |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
原子科學院 - 工程與系統科學系 Department of Engineering and System Science |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 166 |
中文關鍵詞: | 單壁奈米碳管 、化學氣相沈積 、機電性質 、單壁奈米碳管網絡 、電子元件性質 、光敏單壁奈米碳管-聚合物之複合物 、光電特性 |
外文關鍵詞: | Single-walled carbon nanotubes (SWNTs), Chemical vapor deposition (CVD), Electromechanical property, SWNT-networks, Electronic property, Photo-sensitive SWNT-polymer composites, Optoelectronic property |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
Abstract
Single-walled carbon nanotubes (SWNTs) are quasi-one-dimensional nanomaterials and ideal one-dimensional quantum systems for fundamental research. SWNTs are also promising candidates for future applications like nanoscale electronics, photonics, electromechanical devices and sensors. Recent study showed that the optical and electrical characteristics of SWNTs are extremely sensitive to the environmental conditions, and such environmental interferences can be mostly avoided by suspending the SWNTs in air. The synthesis and the characterization of suspended SWNTs have attracted a great deal of interest in the recent years.
The first task in this study is the synthesis of high-yield suspended SWNTs by catalytic chemical vapor deposition (CCVD) methods. For the first time, two novel processes, including the direct synthesis of SWNTs across vertically-aligned carbon nanofibers (CNFs) and the silicon nanostructures (Si-ns), are developed. The CNF and Si-ns templates are formed via the bottom-up and top-down approaches, i.e., by the plasmas-enhanced CVD growth of CNFs followed by post-treatment, and the plasma assisted substrate-etching with nanomasks to form Si-ns, respectively. The yields can be optimized by simply tuning the plasma process conditions, e.g., single isolated SWNT suspended over a wide distance of ~ 10 贡m, whose micro-Raman spectra exhibit the intrinsic properties of SWNTs at a single nanotube level.
In the second task, in situ scanning electron microscopy (SEM) is employed for the electromechanical analysis of the SWNTs suspended across CNFs. SEM-based method is used to observe the electrostatic coupling in a real-time and non-contact view. The adhesion properties at the SWNT-CNF junctions are estimated by a simplified model, where the results suggest a strong non-van der Waals force interaction at the interface, which can be attributed to the strong chemical bonds at the SWNT-CNF junctions and amorphous carbon layers clamping around tips of the CNFs.
The fabrication and electrical characteristics of SWNT-based electronic devices for three kinds of applications are investigated in the third part. For in situ assembly of the “few-SWNT devices,” the short-channel devices are applied for high-performance p-type field-effect transistors, or, if metallic or bundled SWNTs are present, interconnects with a current-carrying capability of ~109 A/cm2. For thin-film type transparent conductors, CVD approach using alcohols is developed. Electrical characteristics indicate the Ohmic conduction, which is dominated by the tube-tube resistance in the channel-area. For thin-film type SWNT-network transistors (SNFETs), solution-based separation processes are adopted to obtain the enrichments of semiconducting SWNTs. Further purification by interfacial trapping to remove the bundles is found crucial to achieve high performance SNFETs with high mobility and reasonably high current-ON/OFF ratios.
Optoelectronic switching behaviors upon cyclic photoexcitations of photosensitive SWNT-polymer composites and the governing mechanisms are investigated in the last part. Firstly, two-terminal electrical measurements of the SWNT-network resistors on quartz substrates are used to reveal the native interactions between the SWNTs and the opposite types of polymers. Further study using electrostatic force micorscopy provides direct evidence for the mechanism governing the photoresponses of the SWNT-polymer composites.
單壁奈米碳管為準一維的奈米材料,亦為基礎研究中理想的一維量子系統。單壁奈米碳管被認為有許多的未來應用,包括有電子元件、光電元件、機電系統及感測器等。近期的研究指出,單壁奈米碳管其電學上及光學上的性質對其外在的條件相當的敏感,並可利用將單壁奈米碳管懸掛於空氣中避免諸如此類的環境干擾。因此,懸掛的單壁奈米碳管的合成與分析在近期吸引許多研究學者的注意。
本研究論文主要分為四個主題:首先利用獨創的技術以電漿前或後處理的方式,利用催化劑式化學氣相沈積方法來選擇性直接合成單壁奈米碳管於垂直基版的奈米碳纖維及矽奈米結構上;可藉由電漿參數的調變來最佳化懸掛單壁奈米碳管的量率。而後,利用臨場掃瞄式電子顯微鏡,以靜電力吸引的方式來探求懸掛單壁奈米碳管與其支撐-奈米碳纖維頂端之間的作用力;使用一個簡化的模型分析後,發現到單壁奈米碳管與奈米碳纖維其間之作用力遠大於分子間的凡德瓦爾力,推測並解釋其強接觸力的機制為化學性鍵結的形成。另外,並以三種不同的方式來製作奈米碳管電子元件,包括臨場製作具有少根碳管的場效電晶體及高承載電流之連接導線、以化學氣相沈積方法製備具高穿透率之單壁奈米碳管導電薄膜、以及利用奈米碳管分離及純化技術所製作之高效能薄膜式電晶體等。最後,利用單壁奈米碳管與光敏聚合物之混合作為光敏感之複合材料,在單晶石英基版上之單壁奈米碳管網絡塗佈有光敏聚合物之電阻元件上可以量測單壁奈米碳管與光敏聚合物間原有的反應;除此之外,更進一步利用靜電力顯微術來研究其光反應之機制,其研究結果提供了“光激發引致直接的電荷轉移”及“基版引致電荷捕捉之靜電力效應”等光響應機制的直接證據。
Bibliography
[1] S. Iijima, Helical microtubules of graphitic carbon, Nature 354, 56 (1991)
[2] J. Giles, Top five in physics, Nature 441, 265 (2006)
[3] S. Iijima and T. Ichihashi, Singe-shell carbon nanotubes of 1-nm diameter, Nature 363, 603 (1993)
[4] D. S. Bethune et al, Cobalt-catalyzed growth of carbon nanotubes with single-atomic-layer walls, Nature 363, 607 (1993)
[5] S. S. Fan et al, Self-oriented regular arrays of carbon nanotubes and their field emission properties, Science 283, 512 (1999)
[6] A. Modi et al, Miniaturized gas ionization sensors using carbon nanotubes, Nature 424, 171 (2003)
[7] J. Kong et al, Nanotube molecular wires as chemical sensors, Science 287, 622 (2000)
[8] Z. C. Wu et al, Transparent, conductive carbon nanotube films, Science 305, 1273 (2004)
[9] F. Kreupl et al, Carbon nanotubes in interconnect applications, Microelectronic Engineering 64, 399 (2002)
[10] S. J. Tans, A. R. M. Verschueren, and C. Dekker, Room-temperature transistor based on a single carbon nanotube, Nature 393, 49 (1998)
[11] Z. Yao et al, Carbon nanotube intramolecular junctions, Nature 402, 273 (1999)
[12] P. Poncharal et al, Electrostatic deflections and electromechanical resonances of carbon nanotubes, Science 283, 1513 (1999)
[13] J. A. Misewich et al, Electrically induced optical emission from a carbon nanotube FET, Science 300, 783 (2003)
[14] T. W. Ebbesen and P. M. Ajayan, Large-scale synthesis of carbon nanotubes, Nature 358, 220 (1992)
[15] A. Thess et al, Crystalline ropes of metallic carbon nanotubes, Science 273, 483 (1996)
[16] A. M. Cassell et al, Large scale CVD synthesis of single-walled carbon nanotubes, J. Phys. Chem. B, 103, 4684 (1999)
[17] M. S. Dresselhaus, G. Dresselhaus, and P. Avouris, Carbon Natotubes: Synthesis, Structure, Properties and Applications (Springer Series in Topics in Applied Physics vol. 80), Berlin: Springer (2001)
[18] Z. F. Ren et al, Synthesis of large arrays of well-aligned carbon nanotubes on glass, Science 282, 1105 (1998)
[19] C. Bower et al, Plasma-induced alignment of carbon nanotubes, Appl. Phys. Lett. 77, 830 (2000)
[20] T. Kato et al, Single-walled carbon nanotubes produced by plasma-enhanced chemical vapor deposition, Chem. Phys. Lett. 381, 422 (2003)
[21] Y. C. Choi et al, Low temperature synthesis of carbon nanotubes by microwave plasma-enhanced chemical vapor deposition, Synthetic Metals 108, 159 (2000)
[22] Y. Li et al, Preferential growth of semiconducting single-walled carbon nanotubes by a plasma enhanced CVD method, Nano Lett. 4, 317 (2004)
[23] A. H. Mahan et al, Hot wire chemical vapor deposition of isolated carbon single-walled nanotubes, Appl. Phys. Lett. 81, 4061 (2002)
[24] S. Maruyama et al, Low-temperature synthesis of high-purity single-walled carbon nanotubes from alcohol, Chem. Phys. Lett. 360, 229 (2002)
[25] M. Cantoro et al, Catalytic chemical vapor deposition of single-wall carbon nanotubes at low temperatures, Nano Lett. 6, 1107 (2006)
[26] D. Takagi et al, Single-walled carbon nanotube growth from highly activated metal nanoparticles, Nano Lett. 6, 2642 (2006)
[27] T. Hertel et al, Spectroscopy of single- and double-wall carbon nanotubes in different environments, Nano Lett. 5, 511 (2005)
[28] H. E. Romero et al, Atom collision-induced resistivity of carbon nanotubes, Science 282, 1105 (1998)
[29] W. Kim et al, Hysteresis caused by water molecules in carbon nanotube field-effect transistors, Nano Lett. 3, 193 (2003)
[30] D. Kang et al, Oxygen-induced p-type doping of a long individual single-walled carbon nanotube, Nanotechnology 16, 1048 (2005)
[31] J. Lefebvre, Y. Homma, and P. Finnie, Bright band gap photoluminescence from unprocessed single-walled carbon nanotubes, Phys. Rev. Lett. 90, 217401 (2003)
[32] H. Son et al, Environment effects on the Raman spectra of individual single-wall carbon nanotubes: suspended and grown on polycrystalline silicon, Appl. Phys. Lett. 85, 4744 (2002)
[33] J. Gao et al, Suspended carbon nanotube quantum wires with two gates, Small 1, 138 (2005)
[34] J. Chen et al, Bright infrared emission from electrically induced excitons in carbon nanotubes, Science 310, 1171 (2005)
[35] A. Javey et al, Ten- to 50-nm-long quasi-ballistic carbon nanotube devices obtained without complex lithography, Proc. Natl. Acad. Sci. U. S. A. 101, 13408 (2004)
[36] S. Heinze et al, Carbon nanotubes as Schottky barrier transistors, Phys. Rev. Lett. 89, 106801 (1999)
[37] S. Kumar, J. Y. Murthy, and M. A. Alam, Percolating conduction in finite nanotube networks, Phys. Rev. Lett. 95, 066802 (2005)
[38] D. Zhang et al, Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes, Nano Lett. 6, 1880 (2006)
[39] E. Artukovic et al, Transparent and flexible carbon nanotube transistors, Nano Lett. 5, 757 (2005)
[40] A. Star et al, Nanotube optoelectronic memory devices, Nano Lett. 4, 1587 (2004)
[41] J. Borghetti et al, Optoelectronic switch and memory devices based on polymer-functionalized carbon nanotube transistors, Adv. Mater. 18, 2535 (2006)
[42] M. Freitag et al, Photoconductivity of single carbon nanotubes, Nano Lett. 3, 1067 (2003)
[43] S. Chaudhary et al, Hierarchical placement and associated optoelectronic impact of carbon nanotubes in polymer-fullerene solar cells, Nano Lett. 7, 1973 (2007)
[44] L. Hu et al, Light-induced charge transfer in Pyrene/CdSe-SWNT hybrids, Adv. Mater. 20, 939 (2008)
[45] S. S. Samsonidze et al, The concept of cutting lines in carbon nanotube science, J. Nanosci. Nanotech. 3, 431 (2003)
[46] R. Saito, G. Dresselhaus, and M. S. Dresselhaus, Physical Properties of Carbon Natotubes, London: Imperial College Press (1998)
[47] S. Reich, C. Thomsen, and J. Maultzsch, Carbon Nanotubes: Basic Concepts and Physical Properties, Berlin: WILEY-VCH (2004)
[48] M. S. Dresselhaus et al, Raman spectroscopy of carbon natotubes, Phys. Rep. 409, 47 (2005)
[49] P. R. Wallace, The band theory of graphite, Phys. Rev. 71, 622 (1940)
[50] T. Ando, Excitons in carbon nanotubes, J. Phys. Soc. Jpn. 66, 1066 (1997)
[51] C. L. Kane and E. J. Mele, Ratio problem in single carbon nanotube fluorescence spectroscopy, Phys. Rev. Lett. 90, 207401 (2003)
[52] F. Wang et al, The optical resonances in carbon nanotubes arise from excitons, Science 308, 838 (2005)
[53] Z. Wang et al, Determination of the exciton binding energy in single-walled carbon nanotubes, Phys. Rev. Lett. 96, 047403 (2006)
[54] G. Dukovic et al, Structural dependence of excitonic optical transitions and band-gap energies in carbon nanotubes, Nano Lett. 5, 2314 (2005)
[55] J. Jiang et al, Chirality dependence of exciton effects in single-wall carbon nanotubes: Tight-binding model, Phys. Rev. B 75, 035407 (2007)
[56] J. Maultzsch et al, Radial breathing mode of single-walled carbon nanotubes: Optical transition energies and chiral-index assignment, Phys. Rev. B 72, 205438 (2005)
[57] M. S. Dresselhaus et al, Raman spectroscopy on isolated single wall carbon nanotubes, Carbon 40, 2043 (2002)
[58] T. S. Jespersem, Raman Scattering in Carbon Nanotubes, MS. Thesis, University of Copenhagen, 2003
[59] M. S. Dresselhaus and P. C. Eklund, Phonons in carbon nanotubes, Adv. Phys. 49, 705 (2000)
[60] J. C. Meyer et al, Raman modes of index-identified freestanding single-walled carbon nanotubes, Phys. Rev. Lett. 95, 217401 (2005)
[61] V. W. Brar et al, Resonance Raman spectroscopy characterization of single-wall carbon nanotube separation by their metallicity and diameter, J. Nanosci. Nanotech. 5, 209 (2005)
[62] C. Y. Jiang et al, Strong enhancement of the Breit-Wigner-Fano Raman line in carbon nanotube bundles caused by plasmon band formation, Phys. Rev. B 66, 161404 (2002)
[63] K. T. Nguyen, A. Gaur, and M. Shim, Fano lineshape and phonon softening in single isolated metallic carbon nanotubes, Phys. Rev. Lett. 98, 145504 (2007)
[64] E. Pop et al, Negative differential conductance and hot phonons in suspended nanotube molecular wires, Phys. Rev. Lett. 95, 155505 (2005)
[65] Y. J. Jung et al, High-density, large-area single-walled carbon nanotube networks on nanoscale patterned substrates, J. Phys. Chem. B 107, 6859 (2003)
[66] B. Yang et al, Template-directed carbon nanotube network using self-organized Si nanocrystals, Appl. Phys. Lett. 86, 263107 (2005)
[67] Y. Zhang et al, Substrate-induced Raman frequency variation for single-walled carbon nanotubes, J. Am. Chem. Soc. 127, 17156 (2005)
[68] A. G. Walsh et al, Screening of excitons in single, suspended carbon nanotubes, Nano Lett. 7, 1485 (2007)
[69] Y. Ohno et al, Excitonic transition energies in single-walled carbon nanotubes: Dependence on environmental dielectric constant, Phys. Status Solidi B-Basic Solid State Phys. 244, 4002 (2007)
[70] H. Dai et al, Electrical transport properties and field effect transistors of carbon nanotubes, Nano 1, 1 (2006)
[71] J. U. Lee et al, Photovoltaic effect in ideal carbon nanotube diodes, Appl. Phys. Lett. 87, 073101 (2005)
[72] Z. Yao, C. L. Kane, and C. Dekker, High-field electrical transport in single-wall carbon nanotubes, Phys. Rev. Lett. 84, 2941 (2000)
[73] E. Pop et al, Thermal conductance of an individual single-wall carbon nanotube above room temperature, Nano Lett. 6, 96 (2006)
[74] C. H. Weng et al, Structural transformation and field emission enhancement of carbon nanofibers by energetic argon plasma post-treatment, Appl. Phys. Lett. 85, 4732 (2004)
[75] H. W. Wei et al, Effect of high-voltage sheath electric field and ion-enhanced etching on growth of carbon nanofibers in high-density plasma chemical-vapor deposition, J. Appl. Phys. 98, 044313 (2005)
[76] S. C. Tseng et al, Field emission characteristics of a single free standing carbon nanotube with gate electrode, Diamond Relat. Mater. 14, 2064 (2005)
[77] Y. Y. Lin et al, Experimental characterization of an inductively coupled acetylene/hydrogen plasma for carbon nanofiber synthesis, J. Vac. Sci. Techno. B 24, 97 (2006)
[78] W. Y. Lee et al, Lateral growth of single-walled carbon nanotubes across electrodes and the electrical property characterization, Diamond Relat. Mater. 14, 1852 (2005)
[79] K. Y. Shin et al, In situ growth of single-walled carbon nanotubes by bimetallic technique with/without dielectric support for nanodevice applications, J. Vac. Sci. Techno. B 24, 358 (2006)
[80] P. Girard, Electrostatic force microscopy: principles and some applications to semiconductors, Nanotechnology 12, 485 (2001)
[81] The AFM/EFM system is supported by Mr. Ong Hock Guan and Prof. Juling Wang at School of Material Science and Engineering, Nanyang Technological University, Singapore.
[82] C. H. Lei et al, Quantitative electrostatic force microscopy-phase measurements, Nanotechnology 15, 627 (2004)
[83] S. Gómez-Moňivas1 et al, Tip-shape effects on electrostatic force microscopy resolution, Nanotechnology 12, 496 (2001)
[84] V. I. Merkulov et al, Shaping carbon nanostructures by controlling the synthesis process, Appl. Phys. Lett. 79, 1178 (2001)
[85] L. H. Chen et al, Control of carbon nanotube morphology by change of applied bias field during growth, Appl. Phys. Lett. 85, 5373 (2004)
[86] T. Rueckes et al, Carbon nanotube-based nonvolatile random access memory for molecular computing, Science 289, 5476 (2000)
[87] V. Sazonova et al, A tunable carbon nanotube electromechanical oscillator, Nature 431, 284 (2004)
[88] H. B. Peng et al, Ultrahigh frequency nanotube resonators, Phys. Rev. Lett. 97, 087203 (2006)
[89] C. Stampfer et al, Fabrication of single-walled carbon-nanotube-based pressure sensors, Nano Lett. 6, 433 (2006)
[90] C. Stampfer et al, Nano-electromechanical displacement sensing based on single-walled carbon nanotubes, Nano Lett. 6, 1449 (2006)
[91] R. Lefèvre et al, Scaling law in carbon nanotube electromechanical devices, Phys. Rev. Lett. 95, 185504 (2005)
[92] M. Dequesnes, S. V. Rotkin, and N. R. Aluru, Calculation of pull-in voltages for carbon-nanotube-based nanoelectromechanical switches, Nanotechnology 13, 120 (2002)
[93] S. Sapmaz et al, Carbon nanotubes as nanoelectromechanical systems, Phys. Rev. B 67, 235414 (2003)
[94] J. W. Kang et al, A study on carbon nanotube bridge as a electromechanical memory device, Physica E 27, 332 (2005)
[95] S. T. Purcell et al, Tuning of nanotube mechanical resonances by electric field pulling, Phys. Rev. Lett. 89, 276103 (2002)
[96] B. Witkamp, M. Poot, and H. S. J. van der Zant, Bending-mode vibration of a suspended nanotube resonator, Nano Lett. 6, 2904 (2006)
[97] J. D. Whittaker et al, Measurement of the adhesion force between carbon nanotubes and a silicon dioxide substrate, Nano Lett. 6, 953 (2006)
[98] N. R. Franklin and H. Dai, An enhanced CVD approach to extensive nanotube networks with directionality, Adv. Mater. 12, 890 (2000)
[99] Z. R. Abrams and Y. Hanein, Tube-tube and tube-surface interactions in straight suspended carbon nanotube structures, J. Phys. Chem. B 110, 21419 (2006)
[100] Y. Homma, D. Takagi, and Y. Kobayashi, Suspended architecture formation process of single-walled carbon nanotubes, Appl. Phys. Lett. 88, 023115 (2006)
[101] C. K. Wu, Device fabrication and synthesis of suspended single-walled carbon nanotubes crossing tips of carbon nanofibers and adhesion force analysis, MS. Thesis, National Tsing Hua University, 2006
[102] E. D. Minot et al, Tuning carbon nanotube band gaps with strain, Phys. Rev. Lett. 90, 156401 (2003)
[103] A. Heidelberg et al, A generalized description of the elastic properties of nanowires, Nano Lett. 6, 1101 (2006)
[104] H. Son et al, Strain and friction induced by van der Waals interaction in individual single walled carbon nanotubes, Appl. Phys. Lett. 90, 253113 (2001)
[105] F. Ding et al, The importance of strong carbon-metal adhesion for catalytic nucleation of single-walled carbon nanotubes, Nano Lett. 8, 463 (2008)
[106] K. Urita et al, In situ observation of thermal relaxation of interstitial-vacancy pair defects in a graphite gap, Phys. Rev. Lett. 94, 155502 (2005)
[107] A. M. Morales and C. M. Lieber, A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208 (1998)
[108] N. Wang et al, Si nanowires grown from silicon oxide, Chem. Phys. Lett. 299, 237 (1999)
[109] Y. Cui et al, Diameter-controlled synthesis of single-crystal silicon nanowires, Appl. Phys. Lett. 78, 2214 (2001)
[110] T. Tadayz et al, Formation of 10 nm Si structures using size-selected metal clusters, J. Phys. D 31, L21 (1998)
[111] K. Seeger and R. E. Palmer, Fabrication of silicon cones and pillars using rough metal films as plasma etching masks, Appl. Phys. Lett. 74, 1627 (1999)
[112] C. H. Hsu et al, Generally applicable self-masked dry etching technique for nanotip array fabrication, Nano Lett. 4, 471 (2004)
[113] M. C. Yang et al, Well-aligned silicon nanograss fabricated by hydrogen plasma dry etching, Electrochem. Solid-State Lett. 8, C131 (2005)
[114] M. C. Yang et al, Fabrication of silicon and germanium nanostructures by combination of hydrogen plasma dry etching and VLS Mechanism, Jpn. J. Appl. Phys. 44, 5791 (2005)
[115] R. G. Lacerdra et al, Thin-film metal catalyst for the production of multi-wall and single-wall carbon nanotubes, J. Appl. Phys. 96, 4456 (2004)
[116] R. Y. Zhang et al, The contrast mechanism in low voltage scanning electron microscopy of single-walled carbon nanotubes, Nanotechnology 17, 272 (2006)
[117] Y. Wakayama, Y. Tagami, and S. Tanaka, Thin-film metal catalyst for the production of multi-wall and single-wall carbon nanotubes, J. Appl. Phys. 85, 8492 (1999)
[118] T. Durkop et al, Extraordinary mobility in semiconducting carbon nanotubes, Nano Lett. 4, 35 (2004)
[119] Y. H. Hsu, Investigation of CNFETs with in situ CVD grown SWNTs and asymmetric gate structure, M. S. Thesis, Hsinchu, Taiwan, National Tsing Hua University, 2007.
[120] W. Y. Lee, Chemical vapor deposition of single-walled carbon nanotubes for electronic applications, Ph. D. Thesis, Hsinchu, Taiwan, National Tsing Hua University, 2007.
[121] H. Shimauchi et al, Suppression of hysteresis in carbon nanotube field-effect transistors: Effect of contamination induced by device fabrication process, Jpn. J. Appl. Phys. 45, 5501 (2006)
[122] C. Stampfer et al, Raman imaging for processing and process monitoring for nanotube devices, Phys. Stat. Sol. (b) 244, 4341 (2007)
[123] J. Cao, Q. Wang, and H. Dai, Electron transport in very clean, as-grown suspended carbon nanotubes, Nat. Mater. 4, 745 (2005)
[124] F. Kuemmeth et al, Coupling of spin and orbital motion of electrons in carbon nanotubes, Nature 452, 448 (2008)
[125] T. Sreekumar et al, Single-wall carbon nanotube films, Chem. Mater. 15, 175 (2003)
[126] M. Meitl et al, Solution casting and transfer printing single-walled carbon nanotube films, Nano Lett. 4, 1643 (2004)
[127] L. Hu, D. S. Hecht, and G. Grüner, Percolation in transparent and conducting carbon nanotube networks, Nano Lett. 4, 2513 (2004)
[128] M. Kaempgen et al, Characterization of carbon nanotubes by optical spectra, Synth. Met. 135, 755 (2003).
[129] A. Naeemi and J. D. Meindl, Monolayer metallic nanotube interconnects: promising candidates for short local interconnects, IEEE Electron Device Lett. 26, 544 (2005)
[130] W. Y. Lee et al, CVD catalytic growth of single-walled carbon nanotubes with a selective diameter distribution, Diamond Relat. Mater. 17, 66 (2007)
[131] Z. Chen et al, The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett. 5, 1497 (2005)
[132] H. Y. Wu, Lateral growth of single-walled carbon nanotubes using double-layered catalyst pads with controllable diameter distribution, M. S. Thesis, Hsinchu, Taiwan, National Tsing Hua University, 2007.
[133] Z. Chen et al, The role of metal-nanotube contact in the performance of carbon nanotube field-effect transistors, Nano Lett. 5, 1497 (2005)
[134] C. Y. Su, Efficiency enhancement of organic solar-cells using carbon and boron-nitride nanotubes, Ph. D. proposal, Hsinchu, Taiwan, National Tsing Hua University, 2008.
[135] E. S. Snow et al, Random networks of carbon nanotubes as an electronic material, Appl. Phys. Lett. 82, 2145 (2003)
[136] S. Kumar et al, Theory of transfer characteristics of nanotube network transistors, Appl. Phys. Lett. 88, 123505 (2006)
[137] Y. Zhou et al, p-channel, n-channel thin film transistors and p-n diodes based on single wall carbon nanotube networks, Nano Lett. 4, 2031 (2004)
[138] M. S. Arnold et al, Sorting carbon nanotubes by electronic structure using density differentiation, Nat. Nanotech. 1, 60 (2006)
[139] P. W. Chiu and C. H. Chen, High-performance carbon nanotube network transistors for logic applications, Appl. Phys. Lett. 92, 063511 (2008)
[140] K. H. An et al, A diameter-selective attack of metallic carbon nanotubes by nitronium ions, J. Am. Chem. Soc. 127, 5196 (2005)
[141] M. Zhang et al, DNA-assisted dispersion and separation of carbon nanotubes, Nat. Mater. 2, 338 (2003)
[142] F. Chen et al, Toward the extraction of single species of single-walled carbon nanotubes using fluorene-based polymers, Nano Lett. 7, 3013 (2007)
[143] R. K. Wang, R. D. Reeves, and K. J. Ziegler, Interfacial trapping of single-walled carbon nanotube bundles, J. Am. Chem. Soc. 129, 15124 (2007)
[144] M. Glerup et al, Synthesis of N-doped SWNT using the arc-discharge procedure, Chem. Rev. Lett. 387, 193 (2004)
[145] Private communication with Mr. Chun Wei Lee and Prof. Lain-Jong Li at School of Material Science and Engineering, Nanyang Technological University, Singapore.
[146] A. A. Green and M. C. Hersam, Colored semitransparent conductive coatings consisting of monodisperse metallic single-walled carbon nanotubes, Nano Lett. 8, 1417 (2008)
[147] Y. Ohno et al, Chirality assignment of individual single-walled carbon nanotubes in carbon nanotube field-effect transistors by micro-photocurrent spectroscopy, Appl. Phys. Lett. 84, 1368 (2004)
[148] M. S. Marcus et al, Photogating carbon nanotube transistors, J. Appl. Phys. 100, 084306 (2006)
[149] Y. Ohno, S. Kishimoto, and T. Mizutani, Photoresponse of carbon nanotube field-effect transistors, Jpn. J. Appl. Phys. 44, 1592 (2005)
[150] J. S. Chawla et al, Semiconducting polymer coated single wall nanotube field-effect transistors discriminate holes from electrons, Appl. Phys. Lett. 91, 043510 (2007)
[151] L. L. Chua et al, General observation of n-type field-effect behaviour in organic semiconductors, Nature 434, 194 (2004)
[152] C. Yang et al, Photoinduced charge transfer in poly(p-phenylene vinylene) derivatives and carbon nanotube/C-60 composites, Physica B 338, 366 (2003)
[153] Private communication with Mr. Yumeng Shi and Prof. Lain-Jong Li at School of Material Science and Engineering, Nanyang Technological University, Singapore.
[154] A. Bachtold et al, Scanned probe microscopy of electronic transport in carbon nanotubes, Phys. Rev. Lett. 84, 6082 (2000)
[155] M. Bockrath et al, Scanned conductance microscopy of carbon nanotubes and 财-DNA, Nano Lett. 2, 187 (2002)
[156] W. Lu, D. Wang, and L. Chen, Near-static dielectric polarization of individual carbon nanotubes, Nano Lett. 7, 2729 (2007)
[157] M. Paillet, P. Poncharal, and A. Zahab, Electrostatics of individual single-walled carbon nanotubes investigated by electrostatic force microscopy, Phys. Rev. Lett. 94, 186801 (2005)
[158] M. Zdrojek et al, Charging and discharging processes of carbon nanotubes probed by electrostatic force microscopy, J. Appl. Phys. 100, 114326 (2006)
[159] T. S. Jespersen and J. Nygård, Probing induced defects in individual carbon nanotubes using electrostatic force microscopy, Appl. Phys. A 88, 309 (2007)
[160] X. Cui et al, Controlling energy-level alignments at carbon nanotube/Au contacts, Nano Lett. 3, 783 (2003)
[161] D. C. Coffey and D. S. Ginger, Time-resolved electrostatic force microscopy of polymer solar cells, Nat. Mater. 5, 735 (2006)
[162] L. Chen et al, Photoinduced interfacial charging and “explosion” of monolayer Pentacene islands, Nano Lett. 5, 2241 (2005)
[163] M. Chiesa et al, Correlation between surface photovoltage and blend morphology in polyfluorene-based photodiodes, Nano Lett. 5, 559 (2005)
[164] E. M. Muller and J. A. Marohn, Microscopic evidence for spatially inhomogeneous charge trapping in Pentacene, Adv. Mater. 17, 1410 (2005)
[165] V. Palermo, M. Palma, and P. Samorì, Electronic characterization of organic thin films by Kelvin probe force microscopy, Adv. Mater. 18, 145 (2006)
[166] L. Bürgi, H. Sirringhaus, and R. H. Friend, Noncontact potentiometry of polymer field-effect transistors, Appl. Phys. Lett. 80, 2913 (2002)
[167] P. Nikolaev et al, Gas-phase catalytic growth of single-walled carbon nanotubes from carbon monoxide, Chem. Phys. Lett. 313, 91 (1999)
[168] A. W. Bushmaker et al, Direct observation of mode selective electron-phonon coupling in suspended carbon nanotubes, Nano Lett. 7, 3618 (2007)
[169] M. Oron-Carl and R. Krupke, Raman spectroscopic evidence for hot-phonon generation in electrically biased carbon nanotubes, Phys. Rev. Lett. 100, 127401 (2008)
[170] S. Gupta, K. Dharamvir, and V. K. Jindal, Elastic moduli of single-walled carbon nanotubes and their ropes, Phys. Rev. B 72, 165428 (2005)
[171] B. W. Jeong, J. K. Lim, and S. B. Sinnott, Torsional stiffening of carbon nanotube systems, Appl. Phys. Lett. 91, 093102 (2007)
[172] H. Y. Liang and M. Upmanyu, Axial-strain-induced torsion in single-walled carbon nanotubes, Phys. Rev. Lett. 96, 165501 (2006)
[173] P. L. McEuen et al, Disorder, Pseudospins, and backscattering in carbon nanotubes, Phys. Rev. Lett. 83, 5098 (1999)
[174] V. Perebeinos, J. Tersoff, and P. Avouris, Electron-phonon interaction and transport in semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 086802 (2005)
[175] C. Y. Park et al, Electron-phonon scattering in metallic single-walled carbon nanotubes, Nano Lett. 4, 517 (2004)
[176] A. Javey et al, High-field quasiballistic transport in short carbon nanotubes, Phys. Rev. Lett. 92, 106804 (2004)
[177] E. Pop et al, Electro-thermal transport in metallic single-wall carbon nanotubes for interconnect applications, IEEE Intl. Electron Devices Meeting (IEDM) Washington, DC., Dec. 2005.
[178] M. A. Kuroda, A. Cangellaris, and J. P. Leburton, Nonlinear transport and heat dissipation in metallic carbon nanotubes, Phys. Rev. Lett. 95, 266803 (2005)
[179] E. Pop et al, Electrical and thermal transport in metallic single-wall carbon nanotubes on insulating substrates, J. Appl. Phys. 101, 093710 (2007)
[180] D. Mann et al, Temperature and gas-environment dependent electron and phonon transport in suspended carbon nanotubes up to electrical breakdown, arXiv:cond-mat/0507468 (2005)
[181] D. Mann et al, Thermally and molecularly stimulated relaxation of hot phonons in suspended carbon nanotubes, J. Phys. Chem. B 110, 1502 (2006)
[182] K. Hata et al, Water-assisted highly efficient synthesis of impurity-free single-walled carbon nanotubes, Science 306, 1362 (2004)
[183] R. B. Capaz et al, Temperature dependence of the band gap of semiconducting carbon nanotubes, Phys. Rev. Lett. 94, 036801 (2005)
[184] M. Balkanski, R. F. Wallis, and E. Haro, Anharmonic effects in light scattering due to optical phonons in silicon, Phys. Rev. B 28, 1928 (1983)
[185] H. Lin, Temperature-dependent Raman features of the individual suspended single-walled carbon nanotubes, MS. Thesis, National Tsing Hua University, 2006