簡易檢索 / 詳目顯示

研究生: 孔書硯
Kung, Shu-Yen
論文名稱: 具砷化銦鎵覆蓋層之量子點紅外線光偵測器在寬波段偵測及熱影像之應用
The Applications of InGaAs–Capped Quantum–Dot Infrared Photodetectors in Broadband Detection and Thermal Imaging
指導教授: 吳孟奇
Wu, Meng-Chyi
林時彥
Lin, Shih-Yen
口試委員: 吳孟奇
Wu, Meng-Chyi
林時彥
Lin, Shih-Yen
盧廷昌
施閔雄
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電子工程研究所
Institute of Electronics Engineering
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 78
中文關鍵詞: 量子點紅外線偵測器砷化銦鎵寬波段熱影像
外文關鍵詞: QDIP, InGaAs, Broadband, Thermal imaging
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在本論文中,我們探討具砷化銦鎵覆蓋層之量子點紅外線偵測器的操作機制及其在寬波段偵測和熱影像之應用。與標準的砷化銦/砷化鎵量子點紅外線偵測器相比,具砷化銦鎵覆蓋層之量子點紅外線偵測器有較長的偵測波長。此結果顯示具砷化銦鎵覆蓋層之量子點紅外線偵測器的主要轉換機制是來自於減少量子點激發態到砷化銦鎵量子井基態間的能量差。藉由降低砷化銦量子點的披覆層,更長的偵測波長被驗證出來。此結果是由於減小的量子點的尺寸,使得量子點激發態更靠近砷化銦鎵量子井基態所造成。隨著標準的及具砷化銦鎵覆蓋層的量子點紅外線偵測器元件特性表現,一個淺顯易懂的方法來達到寬波段的量子點紅外線偵測器是將此兩種結構堆疊在一起。此結果顯示元件有著高響應和寬偵測波段是分別來自於中波段之標準量子點及長波段之砷化銦鎵覆蓋層量子點的結構。在此,我們提出了一個簡易的想法。藉由具砷化銦鎵覆蓋層之量子點紅外線偵測器單一元件的表現,沒有了複雜的製程流程、精準的反射式光路和讀取電路晶片準備給焦平面陣列偵測器來擷取大圖象,熱影像可簡單地從單一元件取得。此結果在生物與醫學上極具發展性,且可藉由微小細胞的熱影像來診斷疾病的發生和變化。


    In this thesis, we have investigated the fundamental property of the InGaAs–capped quantum dot infrared photodetectors (QDIPs) and their applications in broadband detection and thermal imaging. Compared with standard InAs/GaAs QDIPs, InGaAs–capped QDIPs have the detection wavelength which is shifted from 6 to 7.9 μm. The results suggest that the dominant transition mechanism in the InGaAs–capped QDIPs is from the QD excited state to the InGaAs QW ground state, which reduced energy difference between the two states. By decreasing the InAs QD coverage from 2.5 to 2.0 ML, an even longer detection wavelength 10.4 μm is observed. Due to the QD excited state is pushed closer to the QW ground state in the InGaAs capping layer. With the device performance of standard and InGaAs–capped QDIPs, a straightforward approach to achieve broadband QDIPs is to stack the two structures into one device. The device would exhibit a wide detection window ranging from 4 to 11 μm with high responsivities. The phenomenon is attributed to the high responsivities of the standard QD and the InGaAs–capped QD structures in the MWIR and LWIR ranges, respectively. We bring up a simple ideal that without the complicated fabrication process, precise focusing mirror lens and readout integrated circuit (ROIC) prepare for focal plane array to extract the large–format, the thermal imaging formation can be obtained easily by a single–device scanning. It is a promising step for diagnosing diseases from a tiny cell.

    Abstract 致謝 Contents List of Figures List of Tables Chapter 1 Introduction 1.1 Introduction and Motivation 1.2 Organization of This Thesis Chapter 2 Experimental techniques and measurment systems 2.1 Compared with QWIPs and QDIPs 2.1.1 The characteristic of Quantum Dot Infrared Photodetector 2.2 Experiments 2.2.1 Mesa Definition 2.2.2 Metallization 2.2.3 Edge Coupling Scheme 2.2.4 Device package 2.3 Spectral responses and I–V Characteristics Measurement System 2.3.1 Low Temperature Measurement Chapter 3 Quantum–dot Infrared Photodetector with InGaAs Capping Layers for Long–Wavelength Detection 3.1 Induction 3.2 Experiment 3.3 Results and Discussion 3.4 Conclusion Chapter 4 Broadband Quantum–Dot Infrared Photodetector 4.1 Induction 4.2 Experiments 4.3 Results and Discussion 4.4 Conclusion Chapter 5 The Application of Quantum–Dot Infrared Photodetectors in Thermal Imaging 5.1 Induction 5.2 Experiments 5.3 Results and Discussion 5.4 Conclusion Chapter 6 Clonclusion Reference

    [1] I. Grave, A. shakouri, N. Kuze, and A. Yariv, Appl. Phys. Lett. 60, 2362 (1992).
    [2] A. Kock, E. Gornik, G. Abstreiter, G. Bohm, M. Walther, and G. Weimann, Appl. Phys. Lett. 60, 2011 (1992).
    [3] K. L. Tsai, K. H. Chang, C. P. Lee, K. F. Huang, J. S. Tsang, and R. H. Cheng, Appl. Phys. Lett. 62, 506 (1993).
    [4] H. C. Liu, J. Li, J. R. Thompson, Z. R. Wasilewski, M. Buchanan, and J. G. simmons, IEEE Electron Device Lett. EDL–14, 556 (1993).
    [5] B. F. Levine, G. Hasnain, C. G. Bethea, and N. Chand, Appl. Phys. Lett. 54, 2704 (1989).
    [6] S. V. Bandara, S. D. Gunapala, J. K. Liu, E. M. Luong, J. M. Mumolo, W. Hong, D. K. Sengupta, and M. J. McKelvey, Appl. Phys. Lett. 72, 2427 (1998).
    [7] S. V. Bandara, S. D. Gunapala, J. K. Liu, S. B. Rafol, C. J. Hill, D. Z. Y. Ting, J. M. Mumolo, T. Q. Trinh, and A. W. K. Liu, Appl. Phys. Lett. 86, 151104 (2005).
    [8] S. F. Tang, S. Y. Lin, and S. C. Lee, Appl. Phys.Lett., vol. 78, pp. 2428 (2001).
    [9] S. T. Chou, M. C. Wu, S. Y. Lin, and J. Y. Chi, Appl. Phys. Lett. 88, 173511 (2006).
    [10] S. D. Gunapala, S. V. Bandara, C. J. Hill, D. Z. Ting, J. K. Liu, S. B. Rafol, E. R. Blazejewski, J. M. Mumolo, S. A. Keo, S. Krishna, Y. C. Chang, and C. A. Shott, Proc. SPIE, vol. 6206, p. 62060J, 2006.
    [11] G. Ariyawansa, A. G. Unil Perera, G. S. Raghavan, G. Von Winckel, A. Stintz, and S. Krishna, IEEE Photon. Technol. Lett., vol. 17, no. 5, pp. 1064–1066, May 2005.
    [12] S. Raghavan, D. Forman, P. Hill, N.R. Weisse–Bernstein, G. von Winckel, P. Rotella, S. Krishna, S.W. Kennerly, J.W. Little, J. Appl. Phys. 96, 1036 (2004).
    [13] H.S. Ling, S.Y. Wang, C.P. Lee, M.C. Lo, Appl. Phys. Lett. 92 (2008) 193506.
    [14] W. H. Lin, C. C. Tseng, K. P. Chao, S. C. Mai, S. Y. Lin, and M. C.Wu, IEEE Photon. Technol. Lett. 21, 1332 (2009).
    [15] W. H. Lin, C. C. Tseng, K. P. Chao, S. Y. Kung, S. Y. Lin, and M. C.Wu, IEEE Photon. Technol. Lett. 22, 963 (2010).
    [16] E. Towe, D. Pan, IEEE J. Sel. Top. Quant. 6(3), 408 (2000).
    [17] B. F. Levine, J. Appl. Phys., vol. 74, pp. R1–R81, 1993.
    [18] S. D. Gunapala, S. V. Bandara, J. K. Liu, C. J. Hill, S. B. Rafol, J. M. Mumolo, J. T. Trinh, M. Z. Tidrow and P. D. LeVan, Semicond. Sci. Technol. 20 No 5 (2005) 473.
    [19] L. Chu, M. Arzberger, G. Bohm and G. Abstreiter, J. Appl. Phys. 85, 2355 (1999).
    [20] G. Jolley, L. Fu, H. H. Tan and C. Jagadish, Appl. Phys. Lett. 91, 173508 (2007).
    [21] D. Leonard, M. Kishnamurthy, C. M. Reaves, S. P. Denbars, and P. M. Petroff, Appl. Phys. Lett. 63, 3203 (1993).
    [22] S. Chakrabarti, A. D. Stiff–Roberts, P. Bhattacharya, S. Gunapala, S. Bandara, S. B. Rafol, and S. W. Kennerly, IEEE Photonics Technol. Lett. 16, 1361 (2004).
    [23] S. Y. Lin, Y. R. Tsai, and S. C. Lee, Appl. Phys. Lett. 78, 2784 (2001).
    [24] S. F. Tang, C. D. Chiang, P. K. Weng, Y. T. Gau, J. J. Ruo, S. T. Yang, C.C. Shih, S. Y. Lin, and S. C. Lee, IEEE Photonics Technol. Lett. 18, 986 (2006).
    [25] S. Krishna, D. Forman, S. Annamalai, P. Dowd, P. Varangis, T. Tumolillo, J. Zilko, K. Sun, M. Liu, J. Campbell, and D. Carothers, Appl. Phys. Lett. 86, 193501 (2005).
    [26] L. Höglund, P. O. Holtz, H. Pettersson, C. Asplund, Q. Wang, H. Malm, S.Almqvist, E. Petrini, and J. Y. Andersson, Appl. Phys. Lett. 93, 203512(2008).
    [27] S. Y. Lin, W. H. Lin, C. C. Tseng, K. P. Chao, and S. C. Mai, Appl. Phys. Lett. 95, 123504 (2009).
    [28] C. C. Tseng, S. T. Chou, S. Y. Lin, C. N. Chen, W. H. Lin, Y. H. Chen, T. H. Chung, and M. C. Wu, J. Vac. Sci. Technol. B, vol. 26, pp. 1831–1833, Nov./Dec. 2008.
    [29] S. Bagavathiappan, T. Saravanan, T. Jayakumar, Baldev Raj, R. Karunanithi, T. M. R. Panicker, M. Paul Korath, and K. Jagadeesan, J Med Phys. 34, 43 (2009).
    [30] E.F.J. Ring, Infrared Physics & Technology. 49 (2007) 297–301
    [31] S. F. Tang, C. D. Chiang, P. K. Weng, Y. T. Gau, J. J. Luo, S. T. Yang, C. C. Shih, S. Y. Lin, and S. C. Lee, IEEE PTL, VOL. 18, NO. 8, APRIL 15, 2006
    [32] S. T. Chou, C. C. Tseng, C. N. Chen, W. H. Lin, S. Y. Lin, and M. C. Wu, Appl. Phys. Lett. 92, 253510 (2008).
    [33] S. T. Chou, S. Y. Lin, R. S. Hsiao, J. Y. Chi, J. S. Wang, M. C. Wu, and J. F. Chen, J. Vac. Sci. Technol. B, vol. 23, no. 3 pp. 1129-1131, June 2005
    [34] Ajit V. Barve, S. J. Lee, S. K. Noh, and S. Krishna, Laser & Photon. Rev. (2009).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE