簡易檢索 / 詳目顯示

研究生: 李秉中
Lee, Ping-Chung
論文名稱: 奈米材料熱電的傳輸性質
Thermal Transport Properties in Nanomaterials
指導教授: 陳洋元
Chen, Yang-Yuan
李志浩
Lee, Chih-Hao
口試委員: 吳茂昆
Wu, Maw-Kuen
李志浩
Lee, Chih-Hao
張嘉升
Chang, Chia-Seng
郭永綱
Kuo, Yung-Kang
陳洋元
Chen, Yang-Yuan
學位類別: 博士
Doctor
系所名稱: 原子科學院 - 工程與系統科學系
Department of Engineering and System Science
論文出版年: 2013
畢業學年度: 101
語文別: 英文
論文頁數: 92
中文關鍵詞: 奈米熱傳導熱電薄膜鉍碲
外文關鍵詞: Bi1-xSbxTe3
相關次數: 點閱:3下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 奈米材料在近幾年受到極大的重視,不論是在理論計算或實驗結果都顯示出低維度材料具有與塊狀材料迥異的物理特性,特別是關於在低維度材料之中之聲子與電子以及聲子與介面間的交互作用為一非常有趣之研究課題。我們將針對奈米材料中的電傳導性質以及熱傳導性質進行量測,已期能深入了解其基本的物理特性。 技術可以算是最廣泛被應用在一維以及二維的材料熱傳導研究的量測技術。我們架設了兩組不同的 量測法分別可以對薄膜以及單一奈米線進行熱傳導率的實驗量測。相較於其他的量測方法, 技術可提供更多的量測資訊,這對於了解在低維度材料中電子與聲子的行為有著極重要的幫助。在二維系統中,我們選擇了CuFeSe2薄膜做為我們的研究對象,我們製備了一系列的高結晶度CuFeSe2薄膜,並利用 技術精準的量測薄膜的熱傳導性質以及西貝克係數,在此研究結果中我們發現此一系列薄膜的熱傳導與其結晶度有著非常高的相關性,結晶性越好的薄膜其熱傳導性質也越好。且由薄膜與基板的介面所貢獻的熱阻也經過仔細的分析並由結果中扣除,以得到精確的薄膜熱傳導係數。而在一維的系統中,我們也製備了一系列單晶的Bi2-xSbxTe3-y 奈米線(線徑由150到890奈米)做為我們熱電性質的研究對象,在此系統中,我們發現了聲子與表面的散射增強了,而且此增強的強度是隨著奈米線的線徑縮小而增加的,此一現象在由聲子所貢獻的熱傳導現象中非常的顯著,由其是在低溫的區域,由於聲子的平均自由徑增加了,因而表面散射對於聲子所貢獻的熱傳導造成更明顯的抑制作用。而利用我們所設計的量測平台,同一根奈米線的西貝克係數以及電傳導特性也可同時被量測出來。結果指出影響奈米線的西貝克係數以及電阻率的主要因素是來自於組成成分差異所造成。


    The low-dimensional materials exhibit a lot of innovative behaviors different from the bulk materials. The interactions of phonon-electron, phonon-interface, and phonon-grain boundary in low dimension materials attracted a lot of attentions in the research society. This initiated my motivation to investigate the electrical and thermodynamic properties in low dimensional systems for understanding their fundamental physics. One important measuring technique is the 3ω method, which can be applied to evaluate the thermal conductivity for low dimensional systems. In this work, the techniques have been developed to measure the cross-plane and in-plane thermal conductivity of a thin film and the longitudinal direction thermal conductivity of an individual nanowire. By comparison with other methods, the techniques yield more information, which is very helpful for understanding the behavior of phonon and electron in low dimension materials. For two-dimensional system, we have measured the cross-plane thermal conductivity of CuFeSe2 thin film which is considered to be the photoelectric material. The results indicate thermal conductivity of the films is strongly dependent on film crystallization, the better crystallization the higher thermal conductivity. In the meantime, the interfacial thermal resistance between film and substrate should also be taken into account for obtaining accurate total thermal conductivity. For one-dimensional system, a series of single crystalline Bi2-xSbxTe3-y nanowires (150 - 890 nm) were fabricated for the thermoelectric properties measurement. The phonon thermal conductivity decreases as the wire diameter reduces at low temperatures, indicating the enhancement of boundary scattering in one-dimensional system. The Seebeck coefficient and electrical resistivity were also measured for the same nanowire subsequently. The results show the Seebeck coefficient and electrical resistivity are greatly dependent on the composition of the nanowires.

    Abstract i 中文摘要 ii 致謝 iii Contents iv List of Figures vii List of Tables xi Chapter 1 Introduction 1 Chapter 2 Theorem and basic concepts 5 2.1 Thermal conduction in solid 5 2.1.1 Thermal conductivity 5 2.1.2 Electronic thermal conductivity 7 2.1.3 Lattice thermal conductivity 9 2.2 Thermoelectricity 20 2.2.1 Seebeck coefficient 20 2.2.2 Electrical resistivity 22 2.2.3 Figure of merit 24 2.2.4 Thermoelectricity in nanostructures 26 Chapter 3 Experimental equipments and measurement techniques 29 3.1 Experimental equipments 29 3.1.1 X-ray diffraction (XRD) 29 3.1.2 Scanning electron microscope (SEM) 31 3.1.3 Transmission electron microscope (TEM) 32 3.1.4 Focused ion beam (FIB) 34 3.1.5 Pulsed laser deposition (PLD) 35 3.2 Measurement techniques 36 3.2.1 Four-probe method 36 3.2.2 3ω method for thin film application (cross-plane) 37 3.2.3 Seebeck coefficient measurement for thin film application (cross-plane) 42 3.2.4 Self-heating 3ω method for nanowire application 43 3.2.5 Seebeck coefficient measurement for nanowire application 46 3.3 Instrumentation and measurement platform 47 3.3.1 Instrumentation 47 3.3.2 Platform preparation 48 Chapter 4 Fabrication and characterization of thin films and nanowires 52 4.1 CuFeSe2 thin films 52 4.1.1 Preparation condition 53 4.1.2 Thin film characterization 55 4.2 Bi2-xSbxTe3-y nanowires 57 4.2.1 Preparation condition 58 4.2.2 Nanowire characterization 61 Chapter 5 Results and Discussion 66 5.1 CuFeSe2 thin film 66 5.1.1 Electrical resistivity 66 5.1.2 Thermal conductivity 67 5.1.3 Seebeck coefficient 71 5.1.4 Discussion 72 5.2 Bi2-xSbxTe3-y nanowire 73 5.2.1 Electrical resistivity 73 5.2.2 Thermal conductivity 74 5.2.3 Seebeck coefficient 79 5.2.4 Discussion 82 Chapter 6 Conclusion 83 References 85 Appendix A Publication List 90

    1 D. W. Song, W. N. Shen, B. Dunn, C. D. Moore, M. S. Goorsky, T. Radetic, R. Gronsky, and G. Chen, " Thermal Conductivity of Nanoporous Bismuth Thin Films," Applied Physics Letters 84 (11), 1883-1885 (2004).
    2 H. Tong, J. Zhang, G. Y. Liu, J. A. Herbsommer, G. S. Huang, and N. Tansu, " Thermoelectric Properties of Lattice-matched AlInN Alloy Grown by Metal Organic Chemical Vapor Deposition," Applied Physics Letters 97 (11) (2010); D. G. Cahill, M. Katiyar, and J. R. Abelson, " Thermal-Conductivity of Alpha-SiH Thin-Films," Physical Review B 50 (9), 6077-6081 (1994).
    3 B. Yang, J. L. Liu, K. L. Wang, and G. Chen, " Simultaneous Measurements of Seebeck Coefficient and Thermal Conductivity Across Superlattice," Applied Physics Letters 80 (10), 1758-1760 (2002).
    4 E. S. Landry and A. J. H. McGaughey, " Thermal Boundary Resistance Predictions from Molecular Dynamics Simulations and Theoretical Calculations," Physical Review B 80 (16) (2009); P. E. Hopkins, L. M. Phinney, J. R. Serrano, and T. E. Beechem, " Effects of Surface Roughness and Oxide Layer on the Thermal Boundary Conductance at Aluminum/Silicon Interfaces," Physical Review B 82 (8) (2010).
    5 T. Borca-Tasciuc, A. R. Kumar, and G. Chen, " Data Reduction in 3 Omega Method for Thin-film Thermal Conductivity Determination," Review of Scientific Instruments 72 (4), 2139-2147 (2001).
    6 L. D. Hicks and M. S. Dresselhaus, "Thermoelectric Figure of Merit of a One-dimensional Conductor," Physical Review B 47 (24), 16631-16634 (1993).
    7 Yu-Ming Lin, Xiangzhong Sun, and M. S. Dresselhaus, "Theoretical Investigation of Thermoelectric Transport Properties of Cylindrical Bi Nanowires," Physical Review B 62 (7), 4610-4623 (2000).
    8 Akram I. Boukai, Yuri Bunimovich, Jamil Tahir-Kheli, Jen-Kan Yu, William A. Goddard Iii, and James R. Heath, " Silicon Nanowires as Efficient Thermoelectric Materials," Nature 451 (7175), 168-171 (2008).
    9 Allon I. Hochbaum, Renkun Chen, Raul Diaz Delgado, Wenjie Liang, Erik C. Garnett, Mark Najarian, Arun Majumdar, and Peidong Yang, " Enhanced Thermoelectric Performance of Rough Silicon Nanowires," Nature 451 (7175), 163-167 (2008).
    10 L. Lu, W. Yi, and D. L. Zhang, "3 Omega Method for Specific Heat and Thermal Conductivity Measurements," Review of Scientific Instruments 72 (7), 2996-3003 (2001).
    11 J. S. Blakemore, Solid State Physics. (Cambridge University Press, Cambridge, UK, 1985), 2 ed.
    12 Joseph Callaway, "Model for Lattice Thermal Conductivity at Low Temperatures," Physical Review 113 (4), 1046-1051 (1959).
    13 N. V. Novikov, A. P. Podoba, S. V. Shmegera, A. Witek, A. M. Zaitsev, A. B. Denisenko, W. R. Fahrner, and M. Werner, " Influence of Isotopic Content on Diamond Thermal Conductivity," Diamond and Related Materials 8 (8–9), 1602-1606 (1999).
    14 R. Berman and J. C. F. Brock, "The Effect of Isotopes on Lattice Heat Conduction. I. Lithium Fluoride," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 289 (1416), 46-65 (1965).
    15 D. T. Morelli, J. P. Heremans, and G. A. Slack, " Estimation of the Isotope Effect on the Lattice Thermal Conductivity of Group IV and Group III-V Semiconductors," Physical Review B 66 (19), 195304 (2002).
    16 Glen A. Slack and S. Galginaitis, "Thermal Conductivity and Phonon Scattering by Magnetic Impurities in CdTe," Physical Review 133 (1A), A253-A268 (1964).
    17 P. G. Klemens, "Thermal Conductivity of Solids at Low Temperature", in Encyclopedia of Physics, edited by S. Flugge (Springer-Verlag, Berlin, 1956), Vol. 14, pp. 198-281.
    18 B. Abeles, "Lattice Thermal Conductivity of Disordered Semiconductor Alloys at High Temperatures," Physical Review 131 (5), 1906-1911 (1963).
    19 F. R. N. Nabarro, "The Interaction of Screw Dislocations and Sound Waves," Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences 209 (1097), 278-290 (1951).
    20 R. O. Pohl, "Thermal Conductivity and Phonon Resonance Scattering," Physical Review Letters 8 (12), 481-483 (1962).
    21 J. Yang, G. P. Meisner, D. T. Morelli, and C. Uher, " Iron valence in skutterudites: Transport and magnetic properties of Co1-xFexSb3," Physical Review B 63 (1), 014410 (2000).
    22 Li Shi, Qing Hao, Choongho Yu, Natalio Mingo, Xiangyang Kong, and Z. L. Wang, " Thermal Conductivities of Individual Tin Dioxide Nanobelts," Applied Physics Letters 84 (14), 2638-2640 (2004); J. Navrátil, J. Horák, T. Plecháček, S. Kamba, P. Lošt’ák, J. S. Dyck, W. Chen, and C. Uher, "Conduction band splitting and transport properties of Bi2Se3," Journal of Solid State Chemistry 177 (4–5), 1704-1712 (2004).
    23 Guodong Li, Dong Liang, Richard L. J. Qiu, and Xuan P. A. Gao, "Thermal Conductivity Measurement of Individual Bi2Se3 Nano-ribbon by Self-heating Three-omega Method," Applied Physics Letters 102 (4), 043104-043104 (2013).
    24 Robert Y. Wang, Joseph P. Feser, Jong-Soo Lee, Dmitri V. Talapin, Rachel Segalman, and Arun Majumdar, "Enhanced Thermopower in PbSe Nanocrystal Quantum Dot Superlattices," Nano Letters 8 (8), 2283-2288 (2008).
    25 John S. Steinhart and Stanley R. Hart, "Calibration Curves for Thermistors," Deep Sea Research and Oceanographic Abstracts 15 (4), 497-503 (1968).
    26 G. Jeffrey Snyder and Eric S. Toberer, "Complex Thermoelectric Materials," Nature Materials 7 (2), 105-114 (2008).
    27 Charles P. Poole Jr. and Frank J. Owens, Introduction to Nanotechnology. (A Wiley-Interscience Publication).
    28 Rama Venkatasubramanian, Edward Siivola, Thomas Colpitts, and Brooks O'Quinn, " Thin-film Thermoelectric Devices with High Room-temperature Figures of Merit," Nature 413 (6856), 597-602 (2001).
    29 Joseph P. Heremans, Vladimir Jovovic, Eric S. Toberer, Ali Saramat, Ken Kurosaki, Anek Charoenphakdee, Shinsuke Yamanaka, and G. Jeffrey Snyder, "Enhancement of Thermoelectric Efficiency in PbTe by Distortion of the Electronic Density of States," Science 321 (5888), 554-557 (2008).
    30 D. G. Cahill, " Thermal Conductivity Measurement From 30 to 750 K: The 3 Omega Method (vol 61, pg 802, 1990)," Review of Scientific Instruments 73 (10), 3701-3701 (2002); B. N. Pantha, R. Dahal, J. Li, J. Y. Lin, H. X. Jiang, and G. Pomrenke, " Thermoelectric Properties of InxGa1-xN Alloys," Applied Physics Letters 92 (4) (2008).
    31 S.-M. Lee and David G. Cahill, "Heat Transport in Thin Dielectric Films," Journal of Applied Physics 81 (6), 2590-2595 (1997).
    32 Lawrence Rozier Holland, "Physical Properties of Titanium. III. The Specific Heat," Journal of Applied Physics 34 (8), 2350-2357 (1963); D. Gerlich, B. Abeles, and R. E. Miller, "High-Temperature Specific Heats of Ge, Si, and Ge-Si Alloys," Journal of Applied Physics 36 (1), 76-79 (1965); Lawrence Rozier Holland and Richard C. Smith, "Analysis of Temperature Fluctuations in ac Heated Filaments," Journal of Applied Physics 37 (12), 4528-4536 (1966).
    33 David G. Cahill and R. O. Pohl, " Thermal Conductivity of Amorphous Solids Above the Plateau," Physical Review B 35 (8), 4067-4073 (1987); Norman O. Birge and Sidney R. Nagel, "Wide-frequency Specific Heat Spectrometer," Review of Scientific Instruments 58 (8), 1464-1470 (1987); D. G. Cahill, H. E. Fischer, T. Klitsner, E. T. Swartz, and R. O. Pohl, " Thermal-conductivity of Thin-films - Measurements and Understanding," Journal of Vacuum Science & Technology a-Vacuum Surfaces and Films 7 (3), 1259-1266 (1989); David G. Cahill, " Thermal Conductivity Measurement From 30 to 750 K: the 3 Omega Method," Review of Scientific Instruments 61 (2), 802-808 (1990); R. Frank, V. Drach, and J. Fricke, " Determination of Thermal Conductivity and Specific Heat by a Combined 3 Omega/Decay Technique," Review of Scientific Instruments 64 (3), 760-765 (1993).
    34 N. Hamdadou, M. Morsli, A. Khelil, and J. C. Bernede, " Fabrication of n- and p-type Doped CuFeSe2 Thin Films Achieved by Selenization of Metal Precursors," Journal of Physics D-Applied Physics 39 (6), 1042-1049 (2006).
    35 F. Gonzalez-Jimenez, E. Jaimes, A. Rivas, L. D'Onofrio, J. Gonzalez, and M. Quintero, " New Spin-density Waves Systems: Cu and Fe Selenides and Tellurides," Physica B 261, 987-989 (1999); Q. Y. Lu, J. Q. Hu, K. B. Tang, B. Deng, Y. T. Qian, and Y. Z. Li, " The Synthesis of CuFeSe2 Through a Solventothermal Process," Journal of Crystal Growth 217 (3), 271-273 (2000); J. Lamazares, F. Gonzalezjimenez, E. Jaimes, L. Donofrio, R. Iraldi, G. Sanchezporras, M. Quintero, J. Gonzalez, J. C. Woolley, and G. Lamarche, " Magnetic, Transport, X-ray-diffraction and Mossbauer Measurements on CuFeSe2," Journal of Magnetism and Magnetic Materials 104, 997-998 (1992).
    36 Xin Guo, Xiaopeng Jia, Taichao Su, Kaikai Jie, Hairui Sun, and Hongan Ma, " Double Effects of High Pressure and Sb Doping Content on Thermoelectric Properties of Bi2Te3-based Alloys," Chemical Physics Letters 550 (0), 170-174 (2012).
    37 C. J. Liu, G. J. Liu, and C. J. Su, " Power Factor Improvement in Hydrothermally Synthesized Bi2-xSbxTe3 (x=1.5) - carbon sphere composites," Journal of Solid State Chemistry 193, 127-132 (2012).
    38 Shufen Fan, Junnan Zhao, Jun Guo, Qingyu Yan, Jan Ma, and Huey Hoon Hng, " p-type Bi0.4Sb1.6Te3 Nanocomposites with Enhanced Figure of Merit," Applied Physics Letters 96 (18), 182104 (2010).
    39 Xiao Feng, Yoo Bongyoung, Lee Kyu-Hwan, and V. Myung Nosang, " Electro-transport Studies of Electrodeposited (Bi1-xSbx)2Te3 nanowires," Nanotechnology 18 (33), 335203 (2007).
    40 Cheng-Lung Chen, Yang-Yuan Chen, Su-Jien Lin, James C. Ho, Ping-Chung Lee, Chii-Dong Chen, and Sergey R. Harutyunyan, "Fabrication and Characterization of Electrodeposited Bismuth Telluride Films and Nanowires," The Journal of Physical Chemistry C 114 (8), 3385-3389 (2010).
    41 Jinhee Ham, Wooyoung Shim, Do Hyun Kim, Seunghyun Lee, Jongwook Roh, Sung Woo Sohn, Kyu Hwan Oh, Peter W. Voorhees, and Wooyoung Lee, "Direct Growth of Compound Semiconductor Nanowires by On-Film Formation of Nanowires: Bismuth Telluride," Nano Letters 9 (8), 2867-2872 (2009).
    42 B. J. Lokhande, P. S. Patil, and M. D. Uplane, " Deposition of Highly Oriented ZnO Films by Spray Pyrolysis and Their Structural, Optical and Electrical Characterization," Materials Letters 57 (3), 573-579 (2002).
    43 P. E. Hopkins, R. N. Salaway, R. J. Stevens, and P. M. Norris, " Temperature-dependent Thermal Boundary Conductance at Al/Al2O3 and Pt/Al2O3 Interfaces," International Journal of Thermophysics 28, 947-957 (2007).
    44 Deyu Li, Yiying Wu, Philip Kim, Li Shi, Peidong Yang, and Arun Majumdar, " Thermal Conductivity of Individual Silicon Nanowires," Applied Physics Letters 83 (14), 2934-2936 (2003).
    45 B. N. Brockhouse and P. K. Iyengar, "Normal Vibrations of Germanium by Neutron Spectrometry," Physical Review 108 (3), 894-895 (1957).
    46 N. Mingo, " Calculation of Si Nanowire Thermal Conductivity Using Complete Phonon Dispersion Relations," Physical Review B 68 (11), 113308 (2003).
    47 T. Caillat, M. Carle, P. Pierrat, H. Scherrer, and S. Scherrer, " Termoelectric Properties of (BixSb1-x)2Te3 Single-Crystal Solid-solutions Grown by the THM Method," Journal of Physics and Chemistry of Solids 53 (8), 1121-1129 (1992).
    48 E. L. Kukharenko and V. G. Shepelevich, " Structural and Electrical Properties of Rapidly Quenched Bi2-xSbxTe3 Foils," Inorganic Materials 36 (2), 134-136 (2000).
    49 Jianhui Li, Qing Tan, Jing-Feng Li, Da-Wei Liu, Fu Li, Zong-Yue Li, Minmin Zou, and Ke Wang, "BiSbTe-Based Nanocomposites with High ZT: The Effect of SiC Nanodispersion on Thermoelectric Properties," Advanced Functional Materials, (2013).

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE