研究生: |
柯聰盈 Ke, Tsung-Ying |
---|---|
論文名稱: |
奈米金屬氧化物的性質研究-鈮酸鈉奈米線之壓電性及二氧化鈦之光催化 Properties of Nano-Sized Metal Oxides - Piezoelectricity of Sodium Niobate Nanowire and Photocatalysis of Titanium Dioxides |
指導教授: |
李紫原
Lee, Chi-Young 裘性天 Chiu, Hsin-Tien |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 材料科學工程學系 Materials Science and Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 85 |
中文關鍵詞: | 壓電 、鈮酸鈉 、光催化 、二氧化鈦 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
當材料尺寸縮小至奈米等級,常伴隨有不同於塊材的特性,奈米材料的合成與研究因此吸引了許多的研究目光,本論文的研究主題即在於奈米鈮酸鈉及二氧化鈦的性質研究。首先將微米級原料在不同環境下以低溫迴流法反應數天,並進一步處理得到各式樣貌的氧化物,包括鈮酸鈉奈米線及奈米方塊、二氧化鈦奈米棒及具有雙晶的奈米棒,並且分別量測其壓電常數以及光催化分解污染物的特性。再者,光催化效應仍是一門新穎的學門,其作用機制往往因合成條件的略為差異而有所不同,因而限制了一致而明確的機制建立;鑒於此,本研究以市售的二氧化鈦粉末為研究材料,探討奈米級與微米級二氧化鈦粉末的異同,期望能完整解釋兩者在此效應中所扮演的角色,並能加以應用在其他光觸媒系統。
以微米級五氧化二鈮為原料,在氫氧化鈉水溶液中反應分別得到屬於斜方晶(orthorhombic)結構的鈮酸鈉奈米方塊與具有八面體微孔狀結構的鈮酸鈉水合物奈米線。並以臨場變溫結晶繞射分析,發現在攝氏四百度以上奈米線結構內的結晶水會脫水離開,並且結構逐漸轉為正方晶(tetragonal)結構;當溫度再降至四百度以下,結構轉為略為不規則的斜方晶(orthorhombic)結構。此相轉變為可逆反應,經過高溫再結晶後的奈米線,以壓電力顯微奈米探針量測到,顯示在未經過電場高溫極化處理即具有壓電特性,有別於未經過極化不具壓電性的塊材。
其次,以微米級二氧化鈦為原料,在氫氧化鈉的水溶液中反應得到鈦酸鹽奈米線;進一步以此奈米材料為原料,在鹽酸水溶液反應得到形貌均一、叢聚直徑約為50奈米的金紅石相二氧化鈦奈米棒,其外表面大部分為金紅石相最穩定的{110}晶面。為了進一步得到長寬比更高的產物,在起始溶液中加入大量的氯化鈉,由此得到了直徑為5奈米的奈米棒。將得到的奈米棒進行液相照光分解污染物的測試,發現奈米棒具有優異的催化能力,並且在雙氧水環境下,其分解污染物的能力甚至與著名的P25相當。
另外,在反應過程施加燈泡照射,發現原本的奈米棒側面都長出了許多分支,經過鑑定仍為純金紅石相,藉由穿隧電子顯微鏡分析得知主幹與分支為雙晶結構,以{101}面為雙晶介面,然而其在水相內的光催化能力卻下降許多,這同時表示照光反應確實改變了整體的性質。
另外,為明確了解奈米及微米級銳鈦相二氧化鈦光觸媒特性的不同,以市售的二氧化鈦粉末為研究材料,分別進行了各自在不同酸檢環境下的光觸媒分解污染表現,結果顯示,奈米粒子在pH值越高的環境下催化能力越好,而微米粒子則在pH3有一極高的峰值。藉由量測其分別在不同酸鹼環境下的載子電位,了解到奈米尺寸對光觸媒粒子所帶來的影響; 藉由兩者所量測到的不同電位發現,在微米粒子上的激發電子可以傳導到能帶位置較低的奈米粒子導帶,因此將兩者以1:1的比例混合得到一個新的光觸媒系統, 如電位所預測,兩者可在一寬廣的pH範圍內產生電荷轉移,而得到加強的光觸媒能力,相較於市售P25毫不遜色。
Chapter 1
(1) Yu, J. G.; Su, Y. R.; Cheng, B. “Template-Free Fabrication and Enhanced Photocatalytic Activity of Hierarchical Macro-/Mesoporous Titania” Adv. Funct. Mater. 2007, 12, 1984.
(2) Zlateva, G.; Zhelev, Z.; Bakalova, R.; Kanno, I. “Precise Size Control and Synchronized Synthesis of Six Colors of CdSe Quantum Dots in a Slow-Increasing Temperature Gradient” Inorg. Chem. 2007, 46, 6212.
(3) Segets, D.; Gradl, J.; Taylor, R. K.; Vassilev, V.; Peukert, W. “Analysis of Optical Absorbance Spectra for the Determination of ZnO Nanoparticle Size Distribution, Solubility, and Surface Energy” ACS Nano 2009, DOI: 10.1021/nn900223b.
(4) Yang, H. G.; Sun, C. H.; Qiao, S. Z.; Zao, J.; Liu, G.; Smith, S. C.; Cheng H. M.; Lu, G. Q. “Anatase TiO2 single crystals with a large percentage of reactive facets” Nature 2008, 453, 638.
(5) Kim, K. S.; Zhao, Y.; Jang, H.; Lee, S. Y.; Kim, J. M.; Kim, K. S.; Ahn, J. H.; Kim, P.; Choi, J. Y.; Hong, B. H. “Large-scale pattern growth of graphene films for stretchable transparent electrodes” Nature 2009, 457, 706.
(6) Ai, Z.; Lu, L.; Li, J.; Zhang, L.; Qiu, J.; Wu, M. “Fe@Fe2O3 Core-Shell Nanowires as Iron Reagent. 1. Efficient Degradation of Rhodamine B by a Novel Sono-Fenton Process” J. Phys. Chem. C 2007, 111, 4087.
(7) Kwan, W. P.; Voelker, B. M. “Decomposition of Hydrogen Peroxide and Organic Compounds in the Presence of Dissolved Iron and Ferrihydrite” Environ. Sci. Technol. 2002, 36, 1467.
(8) Stefan, H. B.; Esther, O.; Sabine, G.; Silvia, S.; Elizabeth, P. D,; Leon P.; Jr.; Matthias, S.; Michael, W.; Andre´, M. B. “New Evidence against Hydroxyl Radicals as Reactive Intermediates in the Thermal and Photochemically Enhanced Fenton Reactions” J. Phys. Chem. A 1998, 102, 5542.
(9) Palmisano, G.; Augugliaro, V.; Pagliaro, M.; Palmisano, L. “Photocatalysis: a promising route for 21st century organic chemistry” Chem. Commun. 2007, 3425.
(10) Carp, O.; Huisman, C. L.; Reller, A. “Photoinduced reactivity of titanium dioxide” Prog. Solid State Chem. 2004, 32, 33.
(11) Jia, J.; Ohno, T.; Matsumura, M. “Efficient Dihydroxylation of Naphthalene on Photoirradiated Rutile TiO2 Powder in Solution Containing Hydrogen Peroxide” Chem. Lett. 2000, 908.
(12) Kudo, A.; Miseki, Y. “Heterogeneous photocatalyst materials for water splitting” Chem. Soc. Rev. 2009, 38, 253.
(13) Gratzel, M. “Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells” J. Photochem. Photobiol. A: Chem. 2004, 164, 3.
(14) Strukov B.A.; Levanyuk A. P. “Ferroelectric Phenomena in Crystals.” Springer, 1997.
(15) Lu, M. P.; Song, J. H.; Lu, M. Y.; Chen, M. T.; Gao, Y. F.; Chen L. J.; Wang, Z. L. “Piezoelectric Nanogenerator Using p-Type ZnO Nanowire Arrays” Nano Lett. 2009, 9, 1223.
(16) Wang, Z.; Suryavanshi, A. P.; Yum, K.; Yu, M. F. “Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load” Nano Lett. 2007, 7, 2966.
(17) Wang, Z.; Suryavanshi, A. P.; Yu, M. F. “Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing” Appl. Phys. Lett. 2006, 89, 082903.
(18) Kobayashi, W.; Terasaki, I. “CaCu3Ti4O12/CaTiO3 composite dielectrics: Ba/Pb-free dielectric ceramics with high dielectric constants” Appl. Phys. Lett. 2005, 87, 032902.
(19) Su, W. S.; Chen, Y. F. “Generation of electricity in GaN nanorods induced by piezoelectric effect” Appl. Phys. Lett. 2007, 90, 063110.
(20) Wang, J.; Stampfer, C.; Roman, C.; Ma, W. H.; Setter, N.; Hierold, C. “Piezoresponse force microscopy on doubly clamped KNbO3 nanowires” Appl. Phys. Lett. 2008, 93, 223101.
(21) Cho, C. R.; Katardjiev, L.; Grishin, M.; Grishin, A. “Na0.5K0.5NbO3 thin films for voltage controlled acoustoelectric device applications” Appl. Phys. Lett. 2002, 80, 3171.
(22) Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori K.; Homma, T.; Nagaya, T.; Nakamura, M. “Lead-free piezoceramics” Nature 2004, 432, 84.
(23) Jungk, T.; Hoffmann, A.; Soergel, E. ”Influence of the inhomogeneous field at the tip on quantitative piezoresponse force microscopy” Appl. Phys. A 2007, 86, 353.
(24) Meuer, S.; Oberle, P.; Theato, P.; Tremel, W.; Zentel, R. “Liquid crystalline phases from polymer-functionalized TiO2 nanorods “ Adv. Mater. 2007, 19, 2073.
(25) Dessombz, A.; Chiche, D.; Davidson, P.; Panine, P.; Chane´ac C.; Jolivet, J. P. “Design of liquid-crystalline aqueous suspensions of rutile nanorods: Evidence of anisotropic photocatalytic properties” J. Am. Chem. Soc. 2007, 129, 5904.
(26) Yoo, S.; Akbar, S. A.; Sandhage, K. H. “Nanocarving of bulk titania crystals into oriented arrays of single-crystal nanofibers via reaction with hydrogen-bearing gas “ Adv. Mater. 2004, 16, 260.
(27) Wu, J. M.; Shih, H. C.; Wu, W. T. “Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation “ Nanotechnology 2006, 17, 105.
(28) Dai, Z. R.; Gole, J. L.; Stout, J. D.; Wang, Z. L. “Tin Oxide Nanowires, Nanoribbons, and Nanotubes” J. Phys. Chem. B 2002, 106, 1274.
(29) Chen, C. A.; Chen, Y. M.; Huang, Y. S.; Tsai, D. S.; Tiong, K. K.; Du, C. H. “Growth and characterization of V-shaped IrO2 nanowedges via metal-organic vapor deposition” Nanotechnology 2008, 19, 465607.
(30) Wang, Geng; Lu, W.; Li, J. H.; Choi, J. Y.; Jeong, Y. S.; Choi, S. Y.; Park, J. B.; Ryu, M. K.; Lee, K. Y. “V-Shaped Tin Oxide Nanostructures Featuring a Broad Photocurrent Signal: An Effective Visible-Light-Driven Photocatalyst” Small 2006, 2, 1436.
(31) Chiou, Y. C.; Kumar, U.; Wu, J. C.S.,” Photocatalytic splitting of water on NiO/InTaO4 catalysts prepared by an innovative sol–gel method”, Appl. Catal. A-Gen. 2009, 357, 73.
(32) Hara. M.; Nunoshige, J.; Takata, T.; Kondo, J. N.; Domen, K.,” Unusual enhancement of H2 evolution by Ru on TaON photocatalyst under visible light irradiation”, Chem. Commun. 2003, 3000.
(33) Ohno, T.; Tokieda, K.; Higashida, S.; Matsumura, M.,” Synergism between rutile and anatase TiO2 particles in photocatalytic oxidation of naphthalene”, Appl. Catal. A-Gen. 2003, 244, 383.
(34) Arai, T.; Horiguchi, M.; Yanagida, M.; Gunji, T.; Sugihara, H.; Sayama, K.,” Reaction Mechanism and Activity of WO3-Catalyzed Photodegradation of Organic Substances Promoted by a CuO Cocatalyst”, J. Phys. Chem. C 2009, 113, 6602.
(35) Ho, W. K.; Yu, J. C.; Lin, J.; Yu, J. Q.; Li, P. S.,” Preparation and Photocatalytic Behavior of MoS2 and WS2 Nanocluster Sensitized TiO2”, Langmuir 2004, 20, 5865.
(36) Woan, K.; Pyrgiotakis, G.; Sigmund, W.,” Photocatalytic Carbon-Nanotube–TiO2 Composites”, Adv. Mater. 2009, 21, 1.
(37) Gopal, K.M.; Shankar, K.; Paulose, M.; Varghese, O. K.; Grimes, C. A.,” Use of Highly-Ordered TiO2 Nanotube Arrays in Dye-Sensitized Solar Cells”, Nano Lett. 2006, 6, 215.
(38) Barnes, P. R.F.; Anderson, A. Y.; Koops S. E.; Durrant J. R.; O’Regan, B. C.,” Electron Injection Efficiency and Diffusion Length in Dye-Sensitized Solar Cells Derived from Incident Photon Conversion Efficiency Measurements”, J. Phys. Chem. C 2009, 113, 1126.
Chapter 3
(1) Zhao, M. H.; Wang, Z. L.; Mao, S. X.” Piezoelectric Characterization of Individual Zinc Oxide Nanobelt Probed by Piezoresponse Force Microscope”, Nano Lett. 2004, 4, 587.
(2) Lin, H. N.; Chen, S. H.; Ho, S. T.; Chen, P. R.; Lin, I. N.”Comparative measurements of the piezoelectric coefficient of a lead zirconate titanate film by piezoresponse force microscopy using electrically characterized tips”, J. Vac. Sci. Technol. B 2003, 21, 916.
Chapter 4
(1) Kasuga, T.; Hiramatsu, M.; Hoson, A.; Sekino, T.; Niihara, K.”Formation of Titanium Oxide Nanotube”, Langmuir 1998, 14, 3160.
(2) Han, S.; Li, C.; Liu, Z.; Lei, B.; Zhang, D.; Jin, W.; Liu, X.; Tang, T.; Zhou, C.” Transition Met al Oxide Core-Shell Nanowires: Generic Synthesis and Transport Studies”, Nano Lett. 2004, 4, 1241.
(3) Lu, W.; Lieber, C. M.”Semiconductor nanowires”, J. Phys. D 2006, 39, 387.
(4) Suryavanshi, A. P.; Hu, J.; Yu, M.-F.”Meniscus-Controlled Continuous Fabrication of Arrays and Rolls of Extremely Long Micro- and Nano-Fibers”, Adv. Mater. 2008, 20, 793.
(5) Chen, M. H.; Gao, L.”Selenium nanotube synthesized via a facile template-free hydrothermal method“, Chem. Phys. Lett. 2006, 417, 132.
(6) Wang, Z.; Suryavanshi, A. P.; Yu, M.-F.”Ferroelectric and piezoelectric behaviors of individual single crystalline BaTiO3 nanowire under direct axial electric biasing“, Appl. Phys. Lett. 2006, 89, 082903.
(7) Wang, Z. Y.; Hu, J.; Yu, M.-F.” Axial polarization switching in ferroelectric BaTiO3 nanowire“, Nanotechnology 2007, 18, 235203.
(8) Wang, Z. Y.; Hu, J.; Suryavanshi, A. P.; Yum, K.; Yu, M.-F.” Voltage Generation from Individual BaTiO3 Nanowires under Periodic Tensile Mechanical Load”, Nano Lett. 2007, 7, 2966.
(9) Qin, Y.; Wang, X. D.; Wang, Z. L.” Microfibre–nanowire hybrid structure for energy scavenging”, Nature 2008, 451, 809.
(10) Wang, X. D.; Song, J. H.; Liu, J.; Wang, Z. L.” Direct-Current Nanogenerator Driven by Ultrasonic Waves”, Science 2007, 316, 102.
(11) Desai, A. V.; Haque, M. A.” Influence of electromechanical boundary conditions on elasticity of zinc oxide nanowires”, Appl. Phys. Lett. 2007, 91, 183106.
(12) Su, W. S.; Chen, Y. F.; Hsiao, C. L.; Tu, L. W.” Generation of electricity in GaN nanorods induced by piezoelectric effect”, Appl. Phys. Lett. 2007, 90, 063110.
(13) Wang, J.; Sandu, C. S.; Colla, E.; Wang, Y.; Ma, W.; Gysel, R.; Trodahl, H. J.; Setter, N.; Kuball, M.” Ferroelectric domains and piezoelectricity in monocrystalline Pb(Zr,Ti)O3 nanowires”, Appl. Phys. Lett. 2007, 90, 133107.
(14) Saito, Y.; Takao, H.; Tani, T.; Nonoyama, T.; Takatori, K.; Homma, T.; Nagaya, T.; Nakamura, M.” Lead-free piezoceramics“, Nature 2004, 432, 84.
(15) Baettig, P.; Schelle, C. F.; LeSar, R.; Waghmare, U. V.; Spaldin, N. A.” Theoretical Prediction of New High-Performance Lead-Free Piezoelectrics“, Chem. Mater. 2005, 17, 1376.
(16) Xie, R.-J.; Akimune, Y. “Lead-free piezoelectric ceramics in the (1-x)Sr2NaNb5O15– xCa2NaNb5O15 (0.05≤x≤0.35) system”, J. Mater. Chem. 2002, 12, 3156.
(17) Cross, E. “Lead-free at last” Nature 2004, 432, 24.
(18) Kobayashi, W.; Terasaki, I. “CaCu3Ti4O12/CaTiO3 composite dielectrics: Ba/Pb-free dielectric ceramics with high dielectric constants” Appl. Phys. Lett. 2005, 87, 032902.
(19) Reznichenko, L. A.; Shilkina, L. A.; Turik, A. V.; Dudkina, S. I. “Giant Piezoelectric Anisotropy in Sodium Niobate with a Composite-Like Structure” Tech. Phys. 2002, 47, 206.
(20) Hungria, T.; Pardo, L.; Moure, A.; Castro, A. “Effect of mechanochemical activation on the synthesis of NaNbO3 and processing of environmentally friendly piezoceramics” J. Alloy. Compd. 2005, 395, 166.
(21) Reznitchenko, L. A.; Turik, A. V.; Kuznetsova, E. M.; Sakhnenko, V. P. “Piezoelectricity in NaNbO3 ceramics” J. Phys.: Condens. Matter 2001, 13, 3875.
(22) Ringgaard, E.; Wurlitzer, T. ”Lead-free piezoceramics based on alkali niobates” J. Eur. Ceram. Soc. 2005, 25, 2701.
(23) Guo, Y. P.; Kakimoto, K.; Ohsato, H. “(Na0.5K0.5)NbO3–LiTaO3 lead-free piezoelectric ceramics” Mater. Lett. 2005, 59, 241.
(24) Cho, C.-R.; Katardjiev, I.; Grishin, M.; Grishin, A. “Na0.5K0.5NbO3 thin films for voltage controlled acoustoelectric device applications” Appl. Phys. Lett. 2002, 80, 3171.
(25) Nyman, M.; Tripathi, A.; Parise, J. B.; Maxwell, R. S.; Harrison, W. T. A.; Nenoff, T. M. “A New Family of Octahedral Molecular Sieves: Sodium Ti/ZrIV Niobates” J. Am. Chem. Soc. 2001, 123, 1529.
(26) Xu, H.; Su, Y.; Balmer, M. L.; Navrotsky, A. ”A New Series of Oxygen-Deficient Perovskites in the NaTixNb1-xO3-0.5x System: Synthesis, Crystal Chemistry, and Energetics” Chem. Mater. 2003, 15, 1872.
(27) Xu, H.; Nyman, M.; Nenoff, T. M.; Navrotsky, A. “Prototype Sandia Octahedral Molecular Sieve (SOMS) Na2Nb2O6‚H2O: Synthesis, Structure and Thermodynamic Stability” Chem. Mater. 2004, 16, 2034.
(28) Lanfredi, S.; Lente, M. H.; Eiras, J. A. “Phase transition at low temperature in NaNbO3 ceramic” Appl. Phys. Lett. 2002, 80, 2731.
Chapter 5
(1) Wang, R.; Hashimoto, K.; Fujishima, A.; Chikuni, M.; Kojima, E.; Kitamura, A.; Shimohigoshi, M.; Watanabe, T. “Light-induced amphiphilic surfaces” Nature 1997, 388, 431.
(2) Oregan, B.; Gratzel, M. “A low –cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films” Nature 1991, 353, 737.
(3) Park, N. G.; Lagemaat, J. van de; Frank, A. J. “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells” J. Phys. Chem. B 2000, 104, 8989.
(4) Hu, Y. S.; Kienle, L.; Guo, Y. G.; Maier, J. “High Lithium Electroactivity of Nanometer-Sized Rutile TiO2” Adv. Mater. 2006, 18, 1421.
(5) Koudriachova, M. V.; Harrison, N. M.; Leeuw, S. W. de “Effect of Diffusion on Lithium Intercalation in Titanium Dioxide” Phys. Rev. Lett. 2001, 86, 1275.
(6) Ohno, T.; Sarukawa, K.; Matsumura, M. “Crystal faces of rutile and anatase TiO2 particles and their roles in photocatalytic reactions” New J. Chem. 2002, 26, 1167.
(7) Zanella, R.; Giorgio, S.; Shin, C. H.; Henry, C. R.; Louis, C. “Characterization and reactivity in CO oxidation of gold nanoparticles” J. Catal. 2004, 222, 357.
(8) Nienow, A. M.; Bezares-Cruz, J. C.; Poyer, I. C.; Hua, I. ; Jafvert, C. T. “Hydrogen peroxide-assisted UV photodegradation of Lindane” Chemosphere 2008, 72, 1700.
(9) Ozcan, A.; Sahin, Y.; Koparal, A. S.; Oturan, M. A. “Carbon sponge as a new cathode material for the electro-Fenton process: Comparison with carbon felt cathode and application to degradation of synthetic dye basic blue 3 in aqueous medium” J. Electroanal. Chem. 2008, 616, 71.
(10) Siedlecka, E. M.; Mrozik, W.; Kaczynski, Z.; Stepnowski, P. “Degradation of 1-butyl-3-methylimidazolium chloride ionic liquid in a Fenton-like system” J. Hazard. Mater. 2008, 154, 893.
(11) Andreozzi, R.; Caprio, V.; Insola, A.; Marotta, R. “Advanced oxidation processes (AOP) for water purification and recovery” Catal. Today 1999, 53, 51.
(12) Dionysiou, D. D.; Suidan, M. T.; Baudin, I.; Laine, J. M. “Effect of hydrogen peroxide on the destruction of organic contaminants-synergism and inhibition in a continuous-mode photocatalytic reactor” Appl. Catal.-B Environ. 2004, 50, 259.
(13) Jia, J. G.; Ohno, T.; Matsumura, M. “Efficient Dihydroxylation of Naphthalene on Photoirradiated Rutile TiO2 Powder in Solution Containing Hydrogen Peroxide” Chem. Lett. 2000, 8, 908.
(14) Hirakawa, T.; Yawata, K.; Nosaka, Y. “Photocatalytic reactivity for O2 − and OH radical formation in anatase and rutile TiO2 suspension as the effect of H2O2 addition” Appl. Catal. A-Gen. 2007, 325, 105.
(15) Torimoto, T.; Nakamura, N.; Ikeda, S. ; Ohtani, B. “Discrimination of the active crystalline phases in anatase–rutile mixed titanium(IV) oxide photocatalysts through action spectrum analyses” Phys. Chem. Chem. Phys. 2002, 4, 5910.
(16) Diebold, U. “The surface science of titanium dioxide” Surf. Sci. Rep. 2003, 48, 53.
(17) Yoo, S.; Akbar, S. A.; Sandhage, K. H. “Nanocarving of Bulk Titanium Crystals into Oriented Arrays of Single-Crystal Nanofibers via Reaction with Hydrogen-Bearing Gas” Adv. Mater. 2004, 16, 260.
(18) Tahir, M. N.; Theato, P.; Oberle, P.; Melnyk, G.; Faiss, S.; Kolb, U.; Janshoff, A.; Stepputat, M.; Tremel, W. “Facile Synthesis and Characterization of Functionalized, Monocrystalline Rutile TiO2 Nanorods” Langmuir 2006, 22, 5209.
(19) Meuer, S.; Oberle, P.; Theato, P.; Tremel, W.; Zentel, R. “Liquid Crystalline Phases from Polymer-Functionalized TiO2 Nanorods” Adv. Mater. 2007, 19, 2073.
(20) Dessombz, A.; Chiche, D.; Davidson, P.; Panine, P.; Chane´ac C.; Jolivet, J. P. “Design of liquid-crystalline aqueous suspensions of rutile nanorods: Evidence of anisotropic photocatalytic properties” J. Am. Chem. Soc. 2007, 129, 5904.
(21) Hosono, E.; Fujihara, S.; Kakiuchi, K.; Imai, H. “Growth of Submicrometer-Scale Rectangular Parallelepiped Rutile TiO2 Films in Aqueous TiCl3 Solutions under Hydrothermal Conditions” J. Am. Chem. Soc. 2004, 126, 7790.
(22) Cheng, H. M.; Ma, J. M.; Zhao, Z. G.; Qi, L. M. “Hydrothermal Preparation of Uniform Nanosize Rutile and Anatase Particles” Chem. Mater. 1995, 7, 663.
(23) Zhu, H. Y.; Lan, Y.; Gao, X. P.; Ringer, S. P.; Zheng, Z. F.; Song, D. Y.; Zhao, J. C. “Phase Transition between Nanostructures of Titanate and Titanium Dioxides via Simple Wet-Chemical Reactions” J. Am. Chem. Soc. 2005, 127, 6730.
(24) Sugimoto, T.; Zhou, X. P.; Muramatsu, A. “Synthesis of Uniform Anatase TiO2 Nanoparticles by Gel–Sol Method” J. Colloid Interface Sci. 2002, 252, 339.
(25) Baes, C. F.; Mesmer, Jr. and R. E. “The Hydrolysis of Cations” Wiley Interscience, New York, 1976.
(26) Zhang, W. W.; Chen, S. G.; Yu, S. Q.; Yin, Y. S. “Experimental and theoretical investigation of the pH effect on the titania phase transformation during the sol–gel process” J. Cryst. Growth 2007, 308, 122.
(27) Ambrus, Z.; Mogyorosi, K.; Szalai, A.; Alapi, T.; Demeter, K.; Dombi, A.; Sipos, P. “Low temperature synthesis, characterization and substrate-dependent photocatalytic activity of nanocrystalline TiO2 with tailor-made rutile to anatase ratio” Appl. Catal. A-Gen. 2008, 340, 153.
(28) Park, N.-G.; Lagemaat, J. van de; Frank, A. J. “Comparison of Dye-Sensitized Rutile- and Anatase-Based TiO2 Solar Cells” J. Phys. Chem. B 2000, 104, 8989.
(29) Chu, R. H.; Yan, J. C.; Lian, S. Y.; Wang, Y. H.; Yan, F. C.; Chen, D. W. “Shape-controlled synthesis of nanocrystalline titania at low temperature” Solid State Commun. 2004, 130, 789.
(30) Yin, S.; Li, R. X.; He, Q. L.; Tsugio, S. “Low temperature synthesis of nanosize rutile titania crystal in liquid media” Mater. Chem. Phys. 2002, 75, 76.
(31) Yin, S.; Hasegawa, H.; Sato, T. “Phase-Compositional and Morphological Control of Titania Nanoparticles via Low Temperature Dissolution-Reprecipitation Process in Liquid Media” Chem. Lett. 2002, 31, 564.
Chapter 6
(1) Chakrapani, V.; J. C.; Anderson, A. B.; Wolter, S. D.; Stoner, B. R.; Sumanasekera, G. U. “Charge Transfer Equilibria Between Diamond and an Aqueous Oxygen Electrochemical Redox Couple” Science 2007, 318, 1424.
(2) Ristein, J. “Surface Transfer Doping of Semiconductors” Science 2006, 313, 1057.
(3) Hagfeldtt, A.; Gratzel, M. “Light-Induced Redox Reactions in Nanocrystalline Systems” Chem. Rev. 1995, 95, 49.
(4) Noack, V.; Weller, H.; Eychmuller, A.” Transport of a charge carrier packet in nanoparticulate ZnO electrodes” Phys. Chem. Chem. Phys. 2003, 5, 384.
(5) Chen, D. W.; Ray, A. K. “Removal of toxic metal ions from wastewater by semiconductor photocatalysis” Chem. Eng. Sci. 2001, 56, 1561.
(6) Litter, M. I. “N2O decomposition in the presence of ammonia on faujasite-supported metal catalysts” Appl. Catal. B-Environ. 1999, 23, 89.
(7) Chenthamarakshan, C. R.; Rajeshwar, K. “Heterogeneous Photocatalytic Reduction of Cr(VI) in UV-Irradiated Titania Suspensions: Effect of Protons, Ammonium Ions, and Other Interfacial Aspects” Langmuir 2000, 16, 2715.
(8) Brown, G. T.; Darwent, J. R. “Photoreduction of methyl orange sensitized by colloidal titanium dioxide” J. Chem. Soc., Faraday Trans. I 1984, 80, 1631
(9) Kolle, U.; Moser, J.; Gratzel, M. „Dynamics of interfacial charge-transfer reactions in semiconductor dispersions. Reduction of cobaltoceniumdicarboxylate in colloidal titania“ Inorg. Chem. 1985, 24, 2253.
(10) O’regan, B.; Gratzel, M. “A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films “ Nature 1991, 353, 737.
(11) Ku, Y.; Jung, I. L. “Photocatalytic reduction of Cr(VI) in aqueous solutions by UV irradiation with the presence of titanium dioxide” Wat. Res. 2001, 35, 135.
(12) Ferry, J. L.; Glaze, W. H. “Photocatalytic Reduction of Nitro Organics over Illuminated Titanium Dioxide: Role of the TiO2 Surface” Langmuir 1998, 14, 3551.
(13) Lawton, L. A.; Robertson, P. K. J.; Cornish, B. J. P.A.; Marr, I. L.; Jaspars, M. “Processes influencing surface interaction and photocatalytic destruction of microcystins on titanium dioxide photocatalysts” J. Catal. 2003, 213, 109.
(14) Woan, K.; Pyrgiotakis, G.; Sigmund, W. “Photocatalytic Carbon-Nanotube-TiO2 Composites” Adv. Mater. 2009, 21, 2233.