研究生: |
陳柏諭 Chen, Po-Yu |
---|---|
論文名稱: |
在無線感測網路之群體行動管理 Group Mobility Management in Wireless Sensor Networks |
指導教授: |
陳文村
Chen, Wen-Tsuen |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 通訊工程研究所 Communications Engineering |
論文出版年: | 2009 |
畢業學年度: | 97 |
語文別: | 英文 |
論文頁數: | 92 |
中文關鍵詞: | 感測網路 、無線網路 、導引系統 、群體導引 、行動管理 |
外文關鍵詞: | group guiding, sensor network, wireless network |
相關次數: | 點閱:4 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本論文中,我們研究無線感測網路中群體行動管理的議題和無線感測網路中重要的應用:導引服務。在此論文中所指的群體為人群。在現行的導引系統中,導引的行為都是屬於固定式或是人工的方式來進行,這些導引的方法通常沒有彈性(無法反應現實情況)或是高成本(人力支出),而無線感測網路提供了一個契機。因為導引應用除了包含一般情況的導引服務外,在有危險事件(如火災、地震等)發生的時候如何將人群快速及安全的導引離開現場也是一個很重要的服務。所以導引服務一直都是無線感測網路中一個重要的議題。本論文主要由三個部分所組成:解決廣播問題、負載平衡的導引方法和群體導引服務系統。
廣播一直都是無線網路最常使用的一種傳遞訊息的方法,但是廣播也會帶來非常大的訊息量,因為廣播的動作就是網路節點一直不斷的轉送所收到訊息封包直到整個網路的節點都收到這個訊息,也因為如此的方式造成了一個嚴重的網路問題:廣播風暴。所以在過去有許多解決廣播風暴的方法被提出,但是都沒有一個方法同時考慮減低訊息量和省電的議題。所以在本論文中我們提出了一個考慮動態傳輸半徑的分散式廣播協定,除了可以降低傳送的訊息量也可以同時降低節點所使用的電力。
傳統的導引方法皆是採用固定式的路線設計,此方法非但沒有彈性也容易將人群導向危險的區域,所以後來有一些人結合無線感測網路提出了分散式的導引方法,這些方法除了依照路線危險程度來設定導引路線外亦有支援多個出口的設計。但是這一些方法都忽略了一個重要的問題:壅塞問題。因為如果單一方面的將人群導向同個出口有可能會造成人群壅塞在同一條路上造成逃生時間的延遲,所以在設計導引的方法時必須要考慮路線/出口負載平衡的問題,這樣才可以更有效率的將人群疏散。在本論文中我們提出了一個具有負載平衡的導引方法,在提出的方法中,除了考慮距離出口的遠近外,在導引路線上的人群數量也納入設定導引路線的考量之中。除此之外,在之前所提出的方法中,大多採用以位能為基礎的方法來設計導引路線,但是此種方式會造成一個新的問題:方向震盪。由於訊息在網路中散佈的速度不同或是因為網路因素的影響造成訊息損壞進而影響網路之中訊息更新的錯誤,所以會造成位能更新錯誤導致方向無法確定。而這個問題也會在我們所提出的方法中獲得解決。
最後我們提出了一個新的應用架構:群體導引系統。因為之前的導引方法的設計都是考慮單一個體,但是在很多公眾場所,人們都是以群體的方式聚在一起,例如:旅行團。一個旅行團通常包含一個導遊和多位團員。在我們所提出的架構除了包含所提供的服務外也包含群體導引協定和整個系統的實作。我們所提供的服務有四個:導遊追蹤、救援服務、全體呼叫和訊息推播。在整個旅行團裡以導遊最為熟悉整個團體的動向,所以系統必須掌握每一個團體的導遊的位置,而當團員走失或是需要尋求導遊的協助時可以透過救援服務來尋找導遊的位置並且系統會導引團員找到導遊。而當導遊需要集合團員時可以透過全體呼叫的服務來召集所有團員。最後一個訊息推播的服務是當導遊有訊息需要告知團員時,可以透過系統來散佈這一個消息。最後,除了相關的模擬實驗數據外,我們亦有實作一個雛形系統來展示這一個群體導引系統。
A wireless sensor network consists of many inexpensive wireless nodes, each capable of collecting,
storing, and processing environmental information, and communicating with neighboring
nodes. Recently, MAC protocols, routing and transport protocols, and localization technologies
have been studied for wireless sensor networks. Due to the characteristics of sensor nodes, the
wireless sensor network can be used for different proposes in many applications. In this dissertation,
we investigate the group mobility problem in wireless sensor network and study one the
major applications of wireless sensor networks, the guiding navigation service.
The guiding navigation service with its goal to assist moving objects in leaving a hazardous
region safely and quickly. In this dissertation, we propose a distributed guiding navigation protocol
that can guide moving objects to multiple exits with load balancing among multiple navigation
paths to the exits. With the assistances of sensor nodes, moving objects are guided to different
navigation paths so that they can move to exits as soon as possible without causing congestion.
In some traditional navigation algorithms, a sensor may select a wrong guiding direction when
an information-updating packet has not flooded through the whole network. Hence, the guiding
direction of the sensor may oscillate in a short time and guided objects will confuse with this
phenomenon, called direction oscillation problem. This problem will be eliminated in our proposed
protocol. Simulation results indicate that our protocol can guide moving objects to exits in shorter
time and solve the direction oscillation problem effectively.
[1] R. Weinstein, “RFID: a technical overview and its application to the enterprise,” IEEE IT
Professional, vol. 7, no. 3, pp. 27–33, May 2005.
[2] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “A survey on sensor networks,”
IEEE Communications Magazine, vol. 40, no. 8, pp. 102–114, Aug. 2002.
[3] M. Tubaishat and S. Madria, “Sensor networks: an overview,” IEEE Potentials, vol. 22, no. 2,
pp. 20–23, Apr/May 2003.
[4] L. Museum, “Frence,” http://www.louvre.fr.
[5] N. P. Museum, “Taiwan,” http://www.npm.gov.tw.
[6] P. Corke, R. Peterson, and D. Rus, “Localization and navigation assisted by cooperating networked sensors and robots,” Int. Journal of Robotics Research, vol. 24, no. 9, pp. 771–786, Oct. 2005.
[7] Q. Li, M. D. Rosa, and D. Rus, “Distributed algorithms for guiding navigation across a sensor
network,” in ACM Int’l Conf. on Mobile Computing and Networking (MobiCom), 2003.
[8] C. Buragohain, D. Agrawal, and S. Suri, “Distributed navigation algorithms for sensor networks,”
in IEEE INFOCOM, 2006, pp. 1–10.
[9] Y.-C. Tseng, M.-S. Pan, and Y.-Y. Tsai, “A Distributed Emergency Navigation Algorithm for Wireless Sensor Networks,” IEEE Computers, vol. 39, no. 7, pp. 55–62, July 2006.
[10] M. Mamei and F. Zambonelli, “Programming pervasive and mobile computing applications with the tota middleware,” in Proceedings of the Second IEEE International Conference on Pervasive Computing and Communications (PerCom’04), Washington, DC, USA, 2004, p.
263.
[11] M. A. Batalin and G. S. Sukhatme, “Coverage, exploration and deployment by a mobile robot and communication network,” in Int’l Workshop on Information Processing in Sensor Networks (IPSN), 2003.
[12] K. J. O‘Hara and T. R. Balch, “Distributed path planning for robots in dynamic environments
using a pervasive embedded network,” in ACM Int. Joint Conf. on Autonomous Agents and Multiagent Systems, 2004.
[13] M. A. Batalin, G. S. Sukhatme, and M. Hattig, “Mobile robot navigation using a sensor network,” in IEEE International Conference on Robotics and Automation(ICRA), 2004.
[14] Y. Sasson, D. Cavin, and A. Schiper, “Probabilistic broadcast for flooding in wireless mobile ad hoc networks,” in IEEE Wireless Communications and Networking Conf. (WCNC), 2003.
[15] Q. Zhang and D. P. Agrawal, “Dynamic probabilistic broadcasting in manets,” J. Parallel Distrib. Comput., vol. 65, no. 2, pp. 220–233, Aug. 2005.
[16] Z. J. Haas, J. Y. Halpern, and L. Li, “Gossip-Based Ad Hoc Routing,” IEEE/ACM Trans. Netw., vol. 14, no. 3, pp. 479–491, 2006.
[17] A. Khelil, P. J. Marr´on, C. Becker, and K. Rothermel, “Hypergossiping: A generalized broadcast
strategy for mobile ad hoc networks,” Ad Hoc Netw., vol. 5, no. 5, pp. 531–546, 2007.
[18] S. Pleisch, M. Balakrishnan, K. Birman, and R. van Renesse, “Mistral: efficient flooding in mobile ad-hoc networks,” in ACM Int’l Symp. on Mobile Ad Hoc Networking and Computing (MobiHOC), 2006, pp. 1–12.
[19] A. Ju¨ttner and A´ da´m Magi, “Tree based broadcast in ad hoc networks,” Mob. Netw. Appl., vol. 10, no. 5, pp. 753–762, 2005.
[20] Y. Cai, K. Hua, and A. Phillips, “Leveraging 1-hop neighborhood knowledge for efficient flooding in wireless ad hoc networks,” in in Proc. of IEEE Performance, Computing, and Communication Conference(IPCCC), 2006, pp. 347–254.
[21] H. Liu, P. Wan, X. Jia, X. Liu, and F. Yao, “Efficient flooding scheme based on 1-hop information
in mobile ad hoc networks,” in IEEE INFOCOM, 2006, pp. 1–12.
[22] I. Kim, M. Jeong, and C. Kang, “Selective rebroadcast suppression (srs) scheme for directional border flooding in mobile ad hoc networks,” in in Proc. of IEEE Wireless Pervasive Computing, 2006, pp. 1–5.
[23] W. Lou and J. Wu, “Toward broadcast reliability in mobile ad hoc networks with double coverage,” IEEE Trans. Mobile Comput., vol. 6, no. 2, pp. 148–163, 2007.
[24] S.-Y. Ni, Y.-C. Tseng, Y.-S. Chen, and J.-P. Sheu, “The broadcast storm problem in a mobile ad hoc network,” in ACM Int’l Conf. on Mobile Computing and Networking (MobiCom), 1999, pp. 151–162.
[25] J. E.Wieselthier, G. D. Nguyen, and A. Ephremides, “On the construction of energy-efficient broadcast and multicast trees in wireless networks,” in IEEE INFOCOM, 2000.
[26] J. Cartigny, D. Simplot, and I. Stojmenovic, “Localized minimum-energy broadcasting in ad-hoc networks,” in IEEE INFOCOM, 2003, pp. 2210–2217.
[27] I. Kang and R. Poovendran, “Maximizing static network lifetime of wireless broadcast adhoc networks,” in IEEE Int’l Conf. on Communications (ICC), 2003.
[28] R.Wattenhofer, L. Li, P. Bahl, and Y.Wang, “Distributed topology control for power efficient
operation in multihop wireless ad hoc networks,” in IEEE INFOCOM, 2001, pp. 1388–1397.
[29] N. Meghanathan and A. Farago, “Power sensitive power control in ad hoc networks,” in Proc. of ACM Southeast Conference, 2005, pp. 81–86.
[30] N. Li and J. C. Hou, “A scalable, power-efficient broadcast algorithm for wireless networks,”
Wirel. Netw., vol. 12, no. 4, pp. 495–509, 2006.
[31] S. Lin, J. Zhang, G. Zhou, L. Gu, T. He, and J. Stankovic, “Atpc: Adaptive transmission
power control for wireless sensor networks,” in ACM Int’l Conf. on Embedded Networked
Sensor Systems (SenSys), 2006, pp. 223–236.
[32] M. Maro´ti, P. Vo´lgyesi, S. Do´ra, B. Kusy, A. Na´das, A´ kos Le´deczi, G. rgy Balogh, and K. Moln´ar, “Radio interferometric geolocation,” in ACM Int’l Conf. on Embedded Networked Sensor Systems (SenSys), Nov. 2005, pp. 1–12.
[33] K. D. Frampton, “Acoustic self-location in a distributed sensor network,” IEEE Sensor Journal,
vol. 6, no. 1, pp. 166–172, Feb. 2006.
[34] A´ kos Le´deczi, P. Vo´lgyesi, and M. Maro´ti, “Multiple simultaneous acoustic source localizationin
urban terrain,” in Int’l Workshop on Information Processing in Sensor Networks (IPSN), 2005, p. 69.
[35] S.-P. Kuo and Y.-C. Tseng, “A scrambling method for fingerprint positioning based on temporal diversity and spatial dependency,” IEEE Trans. on Knowledge and Data Engineering, vol. 20, no. 5, pp. 78–684, 2008.
[36] ExSal mote, “www.cast.cse.ohio-state.edu/exscal/index.php.”
[37] VigiNet, “www.cs.virginia.edu/wsn/vigilnet/index.html.”
[38] M. Mamei and F. Zambonelli, “Pervasive pheromone-based interaction with rfid tags,” ACM
Trans. Auton. Adapt. Syst., vol. 2, no. 2, p. 4, 2007.
[39] V. D. Park and M. S. Corson, “A highly adaptive distributed routing algorithm for mobile wireless networks,” in IEEE INFOCOM, 1997, pp. 1405–1413.
[40] E. M. Gafni and D. P. Bertsekas, “Distributed algorithms for generating loop-free routes in
networks with frequently changing topology,” in IEEE Trans. Commun., vol. 29, no. 1, Jan. 1981, pp. 11–18.
[41] P. Gupta and P. Kumar, “Critical power for asymptotic connectivity in wireless networks,” in
in Stochastic Analysis, Control, Optimization and Applications, 1998.
[42] J-Sim., “http://www.j-sim.org.”
[43] Ariose Electronics Co., Ltd., “http://www.ario.com.tw.”
[44] XILINX Inc., “http://www.xilinx.com.”
[45] AMIC Tech. Inc., “http://www.amictechnology.com.”