研究生: |
于煥澤 |
---|---|
論文名稱: |
高頻高Q值熱致動壓阻感測式微機械共振器研製與探討晶格方向對TCf的影響 |
指導教授: | 李昇憲 |
口試委員: |
李昇憲
盧向成 鄭裕庭 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 奈米工程與微系統研究所 Institute of NanoEngineering and MicroSystems |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 中文 |
論文頁數: | 66 |
中文關鍵詞: | 高頻 、高Q值 、熱致動壓阻感測式 、SOI 、晶格方向 、溫度頻率係數 |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在本文我們呈現具高頻高Q值熱致動壓阻感測式微機械共振器,共振頻率在16 MHz下真空中能有Q值20,000、空氣中8,000的表現。再來討論如何不在使用任何主動與被動溫度補償技術下,改善熱致動共振器的頻率溫度係數(Temperature Coefficient of Frequency,TCf),使共振器在255K~365K的環境溫度變化下能有低於1ppm/℃的良好表現。為了達成此目的,我們嘗試改變熱致動共振器的角度,讓熱致動共振器沿著不同晶格方向振盪。此外,藉由提供不同的直流偏壓IBias,來觀察不同操作溫度對熱致動共振器的TCf有何影響。最後討論出何種晶格方向與直流偏壓IBias會有最好的TCf。
文中我們會介紹熱致動壓阻感測式共振器的操作原理,從輸入直流交流電所產生的功率消耗,進而生成熱驅動力推動熱致動共振器上的質量塊構成共振系統,最後由壓阻效應產生輸出訊號。選用n-type 低阻值的SOI晶圓與兩道光罩的簡易製程即可獲得我們的高頻高Q值熱致動壓阻感測式微機械共振器。
量測部分則介紹各種不同量測結果,包含光學系統量測機械共振位移、紅外線系統測量實際操作溫度、單埠電性量測輸出訊號與TCf。
文獻參考
[1] R. B. Reichenbach, M. K. Zalalutdinov, K. L. Aubin, D. A.
Czaplewski, B. Ilic, B. H. Houston, H. G. Craighead, J. M.
Parpia,"Resistively Actuated Micromechanical Dome
Resonators,"Proceedings of SPIE, 5344, 51-58 (2004).
[2] I. Bargatin, I. Kozinsky, and M. L. Roukes, "Efficient
electrothermal actuation of multiple modes of high-frequency
nanoelectromechanical resonators," Applied Physics Letters, vol.
90, p. 093116, 2007.
[3] S. Jae Hyeong and O. Brand, "High-Q-factor in-plane-mode
resonant microsensor platform for gaseous/liquid environment,"
Journal of Microelectromechanical Systems,, vol. 17, pp. 483-493,
2008.
[4] L. A. Beardslee, A. M. Addous, S. Heinrich, F. Josse, I. Dufour,
and O. Brand, "Thermal excitation and piezoresistive detection of
cantilever in-plane resonance modes for sensing applications,"
Journal of Microelectromechanical Systems,, vol. 19, pp.
1015-1017, 2010.
[5] A. Rahafrooz, A. Hajjam, B. Tousifar, and S. Pourkamali, "Thermal
63
actuation, a suitable mechanism for high frequency
electromechanical resonators," in Micro Electro Mechanical
Systems (MEMS), 2010 IEEE 23rd International Conference on,
2010, pp. 200-203.
[6] A. Hajjam, A. Rahafrooz, and S. Pourkamali, "Sub-100ppb/℃
temperature stability in thermally actuated high frequency silicon
resonators via degenerate phosphorous doping and bias current
optimization," in 2010 IEEE International,Electron Devices
Meeting (IEDM), 2010, pp. 7.5.1-7.5.4.
[7] A. Rahafrooz and S. Pourkamali, "Active self-Q-enhancement in
high frequency thermally actuated M/NEMS resonators," in 2011
IEEE 24th International Conference Micro Electro Mechanical
Systems (MEMS), , 2011, pp. 760-763.
[8] A. Rahafrooz and S. Pourkamali, "Fully micromechanical
piezo-thermal oscillators," in 2010 IEEE International Electron
Devices Meeting (IEDM), , 2010, pp. 7.2.1-7.2.4.
[9] A. Rahafrooz and S. Pourkamali, "Controlled batch fabrication of
crystalline silicon nanobeam-based resonant structures," in IEEE
24th International Conference on Micro Electro Mechanical
64
Systems (MEMS), 2011, 2011, pp. 1345-1348.
[10] A. Hajjam, A. Rahafrooz, J. C. Wilson, and S. Pourkamali,
"Thermally actuated MEMS resonant sensors for mass
measurement of micro/nanoscale aerosol particles," in 2009 IEEE
Sensors, , 2009, pp. 707-710.
[11] A. R. a. S. Pourkamali, "Rotational Mode Disk Resonators for
High-Q Operation in Liquid," in 2010 IEEE Sensors, , pp.
1071-1074, Nov. 01,2010.
[12] M. Krishnakumar Sundaresan, Gavin K. Ho, Siavash
Pourkamali ,and Farrokh Ayazi, Senior Member, IEEE,
"Electronically Temperature Compensated Silicon Bulk Acoustic
Resonator Reference Oscillator," IEEE Journal of Solid-State
Circuits,, vol. 42, NO6, June 2007.
[13] C. T.-C. N. a. R. T. Howe, "Microresonator frequency control and
stabilization using an integrated micro oven," the 7th International
Conference on Solid-State Sensors and Actuators (Transducers'93),
pp. 1040-1043, June 7-10, 1993.
[14] W.-T. Hsu and C. T.-C. Nguyen, "Stiffness compensated
temperature insensitive micromechanical resonator," in Proc. IEEE
65
MEMS, Las Vegas,NV, Jan. 2002, pp. 731-734
[15] Renata Melamud, Bongsang Kim, Saurabh A. Chandorkar,
Matthew A. Hopcroft, Manu Agarwal, Chandra M. Jha, and
Thomas W. Kenny, "Temperature-compensated high-stability
silicon resonator," Appl. Phys. Lett 90, 244107 ,2007
[16] G. C. a. F. A. R. Tabrizian, "Temperature-Stable High-Q
AlN-on-Silicon Resonators with Embedded Array of Oxide
Pillars," Solid-State Sensors, Actuators, and Microsystems
Workshop (Hilton Head 2010), pp. 100-101, June 2010.
[17] A. R. A. Rahafrooz, Jonathan Gonzales, Reza Abdolvand and S.
Pourkamali, "Localized Thermal Oxidation for Frequency
Trimming and Temperature Compensation of Micromichanical
Resonator," in 2012 IEEE 25th International Conference Micro
Electro Mechanical Systems (MEMS), , pp. 704- 707, Jan 29,2012.
[18] A. L. Arash Hajjam, and Siavash Pourkamali, "Doping-Induced
Temperature Compensation of Thermally Actuated
High-Frequency Silicon Micromechanical Resonators," JOURNAL
OF MICROELECTROMECHANICAL SYSTEMS, vol. 21,NO.3,
June 2012.
66
[19] Roozbeh Tabrizian, Mauricio Pardo, and Farrokh Ayazi, "A 27
MHz Temperature Compenstaed MEMS Oscillator With Sub ppm
Instability," in 2012 IEEE 25th International Conference Micro
Electro Mechanical Systems (MEMS) ,pp.23-26, Jan. 29 2012