簡易檢索 / 詳目顯示

研究生: 黃宜琤
論文名稱: 利用高壓流體反溶劑法製備奈米銀膜
Preparation of Silver Nanoparticle Films by Compressed Fluild Antisolvent
指導教授: 談駿嵩
口試委員: 莊顯成
陳郁文
學位類別: 碩士
Master
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2012
畢業學年度: 100
語文別: 中文
論文頁數: 71
中文關鍵詞: 異硬酯酸銀鹽奈米銀二氧化碳膨脹溶液壓縮流體反溶劑超臨界二氧化碳乾燥導電銀膜
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究利用壓縮流體反溶劑法與超臨界流體乾燥法製備奈米銀膜。研究中利用異硬酯酸與硝酸銀進行離子交換合成出前驅物異硬酯酸銀鹽(Silver Isostearate, AgISt),然後將此前驅鹽溶於有機溶劑中,藉由通入高壓二氧化碳與氫氣形成二氧化碳膨脹溶液以還原前驅物形成奈米銀粒子分散溶液。接著提高二氧化碳壓力使之作為反溶劑,使原本分散在有機溶劑中的奈米銀粒子沉積在基材上形成薄膜,再利用超臨界二氧化碳乾燥以去除殘留於薄膜中之有機溶劑,最後進行鍛燒處理以得完整的導電銀膜。根據研究結果,最適化的條件為:(1)奈米銀懸浮溶液濃度為2.5 mM;(2)反溶劑操作溫度及二氧化碳壓力分別為40 oC及1500 psi,建壓速度為150 psi/min;(3)超臨界二氧化碳乾燥流量為為1 ml/min,乾燥時間為90 min,洩壓時間為4 h;(4)鍛燒升溫速度為2 oC/min、鍛燒溫度為175 oC、時間為30 min,導電薄膜電阻率為5.64×10-6 Ω•cm,厚度為151 nm。利用此方法製備銀膜具有之優勢為:(1)異硬酯酸可當作保護基,避免奈米銀粒子聚集;(2)以高壓二氧化碳作為反溶劑能夠使奈米銀粒子均勻地沉積在基材上;(3)以超臨界二氧化碳進行乾燥可避免薄膜表面張力不均所導致表面結構之破壞;(4)由於鍛燒溫度低且導電度高,未來有機會能利用高分子為基材製作可撓性導電銀膜。


    摘要 I Abstract II 目錄 Ⅳ 表目錄 Ⅵ 圖目錄 Ⅶ 壹、前言與研究目的 1 貳、文獻回顧 3 2.1金屬薄膜製備 3 2.2利用高壓流體製備奈米導電膜 7 2.2.1超臨界流體簡介 7 2.2.2利用超臨界流體沉積奈米金屬粒子 8 2.2.3利用壓縮流體反溶劑法製備奈米金屬粒子/金屬膜 12 2.2.4燒結處理 26 2.3鑑定方法 30 2.3.1紫外/可見光光譜(Ultraviolet and Visible Spectroscopy, UV-vis) 30 2.3.2減弱全反射-傅立葉轉換紅外線光譜儀(ATR-FTIR) 30 2.3.3穿透式電子顯微鏡(Transmission Electron Microscopy, TEM) 31 2.3.4四點探針電阻儀 31 2.3.5掃描式電子顯微鏡(Scanning Electron Microscopy, SEM) 33 2.3.6原子力顯微鏡(Atomic Force Microscope, AFM) 33 參、實驗方法 34 3.1實驗藥品 34 3.2實驗設備與分析儀器 34 3.3實驗流程 35 3.3.1 配置前驅物AgISt之實驗步驟與裝置 35 3.3.2利用氫氣及二氧化碳膨脹溶液還原奈米銀粒子 36 3.3.3基材前處理步驟 36 3.3.4 利用壓縮流體反溶劑法成膜之實驗步驟與裝置 36 3.3.5 燒結 38 肆、實驗結果與討論 39 4.1 AgISt之合成分析 43 4.2還原後粒子大小及形態 44 4.3銀粒子濃度之影響 46 4.4建壓速度及平衡時間影響 47 4.5沉積壓力及溫度之影響 50 4.6乾燥條件之影響 52 4.7洩壓時間之影響 53 4.8燒結條件之影響 54 4.9表面粗糙度測試響 60 伍、結論 62 陸、參考文獻 64

    Akien, G. R.; Poliakoff, M. “A Critical Look at Reactions in Class I and II Gas-Expanded Liquids Using CO2 and Other Gases” Green Chem. 2009, 11, 1083-1100.
    Anand, M.; McLeod, M. C.; Bell, P. W.; Roberts, C. B. “Tunable Solvation Effects on the Size-Selective Fractionation of Metal Nanoparticles in CO2 Gas-Expanded Solvents” J. Phys. Chem. B 2005, 109, 22852-22859.
    Anand, M.; Bell, P. W.; Fan, X.; Enick, R. M.; Roberts, C. B. “Synthesis and Steric Stabilization of Silver Nanoparticles in Neat Carbon Dioxide Solvent Using Fluorine-Free Compounds” J. Phys. Chem. B 2006, 110, 14693-14701.
    Anand, M.; You, S. S.; Hurst, K.; M.; Saunders, S. R.; Kitchens, C. L.; Ashurst, W. R.; Roberts, C. B. “Thermodynamic Analysis of Nanoparticle Size Selective Fractionation Using Gas-Expanded Liquids” Ind. Eng. Chem. Res. 2008, 47, 553-559.
    Bell, P. W.; Anand, M.; Fan, X.; Enick, R. M.; Roberts, C. B. “Stable Dispersions of Silver Nanoparticles in Carbon Dioxide with Fluorine-Free Ligands” Langmuir 2005, 21, 11608-11613.
    Bhosale, P. S.; Stretz, H. A. “Gold Nanoparticle Deposition Using CO2 Expanded Liquids: Effect of Pressure Oscillation and Surface-Particle Interactions” Langmuir 2008, 24 12241-12246.
    Blackburn, J. M.; Long, D. P.; Cabanas, A.; Watkins, J. J. “Deposition of Conformal Copper and Nickel Films from Supercritical Carbon Dioxide” Science 2001, 294, 141-145.
    Brust, M.; Walker, M.; Bethell, D.; Schiffrin, D. J.; Whyman, R. “Synthesis of Thiol-Derivatised Gold Nanoparticles in a Two-Phase Liquid-Liquid System” J. Chem. Soc. Chem. Commun. 1994, 801-802.
    Brust, M; Kiely, C. J. “Some Recent Advances in Nanostructure Preparation from Gold and Silver Particles: a Short Topical Review” Colloids and Surfaces A: Physicochem. Eng. Aspects 2002, 202, 175-186.
    Cabanas, A.; Blackburn, J. M.; Watkins, J. J. “Deposition of Cu Films from Supercritical Fluild Using Cu(I) β-Diketonate Precursor” Microelectron. Eng. 2002 64, 53-61.
    Cabanas, A.; Long, D. P.; Watkins, J. J. “Deposition of Gold Films and Nanostructures from Supercritical Carbon Dioxide” Chem. Mater. 2004, 16, 2028-2033.
    Chou, K. S.; Huang, K. C.; Lee, H. H. “Fabrication and Sintering Effect on the Morphologies and Conductivity of Nano-Ag Particle Films by the Spin Coating Method” Nanotechnol. 2005, 16, 779-784.
    Deegan, R. D.; Bakajin, O.; Dupont, F. D.; Huber, G.; Nagel, S. R.; Witten, T. A. “Capillary Flowasthe Cause of Ring Stains from Dried Liquid Drops” Nature 1997, 389, 827-829.
    Erkey, C. “Preparation of Metallic Supported Nanoparticles and Films Using Supercritical Fluid Deposition” J. of Supercritical Fluids 2009, 47, 517-522.
    Faraday, M. “Experimental Relations of Gold (and Other Metals) to Light” Philos. Trans. R. Soc. London 1857, 147, 145-181.
    Fuchs, K. “The Conductivity of Thin Metallic Films According to the Electron Theory of Metals.” Proc. Combridge Phil. Soc., 1938, 34, 100-108.
    Fuller, S. B.; Wilhelm, E. J.; Jacobson. J. M. “Ink-Jet Printed Nanoparticle Microelectromechanical” J. Microelectromech. Syst. 2002, 11, 54-60.
    Hsieh, H. T.; Chin, W. K.; Tan, C. S. “Facile Synthesis of Silver Nanoparticles in CO2-Expanded Liquids from Silver Isostearate Precursor” Langmuir 2010, 26, 10031-10035.
    Hurst, K. M.; Roberts, C. B.; Ashurst, W. R. “Characterization of Gas-Expanded Liquid-Deposited Gold Nanoparticle Films on Substrates of Varying Surface Energy” Langmuir 2011, 27, 651-655.
    Jessop, P. G.; Subramaniam, B. “Gas-Expanded Liquids.” Chem. Rev. 2007, 107, 2666-2694.
    Jung, I.; Jo, Y. H.; Kim, I.; Lee, H. M. “A Simple Process for Synthesis of Ag Nanoparticles and Sintering of Conductive Ink for Use in Printed Electronics” J. Electron. Mater. 2012, 41, 115-121.
    Kondoh, E. “Deposition of Cu and Ru Thin Films in Deep Nanotrenches/Holes Using Supercritical Carbon Dioxide” Jpn. J. Appl. Phys. 2004, 43, 3328-3933.
    Kordikowski, A.; Schenk, A. P.; Van Nielen, R. M.; Peters, C. J. “Volume Expansions and Vapor-Liquid Equilibria of Binary Mixtures of a Variety of Polar Solvents and Certain Near-Critical Solvents” J. Supercrit. Fluids 1995, 8, 205-216.
    Li, Y.; Wu, Y.; Ong, B. S. “Facile Synthesis of Silver Nanoparticles Useful for Fabrication of High-Conductivity Elements for Printed Electronics” J. Am. Chem. Soc. 2005, 127, 3266-3267.
    Liu, J.; Anand, M. C.; Roberts, B. “Synthesis and Extraction of β-D-Glucose-Stabilized Au Nanoparticles Processed into Low-Defect, Wide-Area Thin Films and Ordered Arrays Using CO2-Expanded Liquids” Langmuir 2006, 22, 3964-3971.
    Liu, J.; Qin, Z.; Wang, G.; Hou, X.; Wang, J. “Critical Properties of Binary and Ternary Mixtures of Hexane + Methanol, Hexane + Carbon Dioxide, Methanol + Carbon Dioxide, and Hexane + Carbon Dioxide + Methanol” J. Chem. Eng. Data 2003, 48, 1610-1613.
    Mayadas, A. F.; Shatzkes, M.; Janak, J.F. “Electrical Resistivity Model for Polycrystalline Films – Case of Specular Reflection at External Surfaces.” Appl. Phys. Lett., 1969, 14, 345.
    McLeod, M. C.; Kitchens, C. L.; Roberts, C. B. “CO2-Expanded Liquid Deposition of Ligand-Stabilized Nanoparticles as Uniform, Wide-Area Nanoparticle Films” Langmuir 2005a, 21, 2414-2418.
    McLeod, M. C.; Anand, M.; Kitchens, C. L.; Roberts, C. B. “Precise and Rapid Size Selection and Targeted Deposition of Nanoparticle Populations Using CO2 Gas Expanded Liquids” Nano Lett. 2005b, 5, 461-465.
    Moisan, S.; Martinez, V.; Weisbecker, P.; Cansell, F.; Mecking, S.; Aymonier, C. “Metallic Nanoparticle Production Utilizing a Supercritical Carbon Dioxide Flow Process” Langmuir 2004, 20, 7078-7082.
    Murray,C. B.; Norris, D. J.; Bawendi, M. G. “Synthesis and Characterization of Nearly Monodisperse CdE (E = Sulfur, Selenium, Tellurium) Semiconductor Nanocrystallites.” J. Am. Chem. Soc. 1993, 115, 8706-8715.
    Neil, A. O.; Watkins, J. J. “Reactive Deposition of Conformal Ruthenium Films from Supercritical Carbon Dioxide” Chem. Mater. 2006, 18, 5652-5658
    Nguyen, B. T.; Gautrot, J. E.; Nguyen, M. T.; Zhu, X. X. “Nitrocellulose-Stabilized Silver Nanoparticles as Low Conversion Temperature Precursors Useful for Inkjet Printed Electronics” J. Mater. Chem. 2007, 17 , 1725-1730.
    Perelaer, J.; de Laat, A. W. M.; Hendriks, C. E.; Schubert, U. S. “Inkjet-Printed Silver Tracks: Low Temperature Curing and Thermal Stability Investigation” J. Mater. Chem. 2008, 18, 3209-3215.
    Saunders, A. E.; Shah, P. S.; Park, E. J.; Lim, K. T.; Johnston, K. P.; Korgel, B. A. “Solvent Density-Dependent Steric Stabilization of Perfluoropolyether-Coated Nanocrystals in Supercritical Carbon Dioxide” J. Phys. Chem. B 2004, 108, 15969-15975.
    Saunders, S. R.; Eden, M. R.; Roberts, C. B. “Modeling the Precipitation of Polydisperse Nanoparticles Using a Total Interaction Energy Model” J. Phys. Chem. C 2011, 115, 4603-4610.
    Saunders, S. R.; Roberts, C. B. “Tuning the Precipitation and Fractionation of Nanoparticles in Gas-Expanded Liquid Mixtures” J. Phys. Chem. C 2011, 115, 9984-9992.
    Saunders, S. R.; Roberts, C. B. “Nanoparticle Separation and Deposition Processing Using Gas Expanded Liquid Technology” Curr. Opin. Chem. Eng. 2012, doi 10.1016/j.coche.2011.12.004.
    Saunders, S. R.; Roberts, C. B. “Size-Selective Fractionation of Nanoparticles at an Application Scale Using CO2 Gas-Expanded Liquids” Nanotechnol. 2009, 20, 475605-475611.
    Sigman, M. B.; Saunders, A. E.; Korgel, B. A. “Metal Nanocrystal Superlattice Nucleation and Growth” Langmuir 2004, 20, 978-983.
    Sondheimer, E.H. “The Meam Free Path of Electrons in Metals.” Adv. Phys., 1952, 1, 1-42.
    Valeton, J. J. P.; Hermans, K.; Bastiaansen, C. W. M.; Broer, D. J.; Perelaer, J.; Schubert, U. S.; Crawford, G. P.; Smith, P. J. “Room Temperature Preparation of Conductive Silver Features Using Spin-Coating and Inkjet Printing” J. Mater. Chem. 2010, 20, 543-546.
    Vo, D. Q.; Shin, E. W.; Kim, J. S.; Kim, S. “Low-Temperature Preparation of Highly Conductive Thin Films from Acrylic Acid-Stabilized Silver Nanoparticles Prepared through Ligand Exchange” Langmuir 2010, 26, 17435-17443.
    Von White, G.; Kitchens, C. L. “Small-Angle Neutron Scattering of Silver Nanoparticles in Gas-Expanded Hexane” J. Phys. Chem. C 2010, 114, 16285–16291.
    Von White, G.; Provost, M. G.; Kitchens, C. L. “Fractionation of Surface-Modified Gold Nanorods Using Gas-Expanded Liquids” Ind. Eng. Chem. Res. 2012, 51, 5181−5189.
    Vossmeyer, T.; L. Katsikas,; Giersig, M.; Popovic, I. G.; Diesner, K.; Chemseddine, A.; Eychmueller, A.; Weller, H. “CdS Nanoclusters: Synthesis, Characterization, Size Dependent Oscillator Strength, Temperature Shift of the Excitonic Transition Energy, and Reversible Absorbance Shift.” J. Phys. Chem. 1994, 98, 7665-7673.
    Watkins, J. J.; Blackburn, J. M.; McCarthy, T. J. “Chemical Fluid Deposition: Reactive Deposition of Platinum Metal from Carbon Dioxide Solution” Chem. Mater. 1999, 11, 213-215.
    Wenzel, C.; Wetzig, K.; Thomas; J., Hecker; M.; Brückner, W. “Thin Film Preparation and Characterization Technique, in Metal Based Thin Films for Electronics” Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005.
    Wong, B.; Yoda, S.; Howdle, S. M. “The Preparation of Gold Nanoparticle Composites Using Supercritical Carbon Dioxide” J. Supercrit. Fluids 2007, 42, 282-287.
    Wu, Y.; Li, Y; Ong, B. S. “A Simple and Efficient Approach to a Printable Silver Conductor for Printed Electronics” J. Am. Chem. Soc. 2007, 129, 1862-1863.
    Yang, J.; Hasell, T.; Smith, D. C.; Howdle, S. M. “Deposition in Supercritical Fluids: from Silver to Semiconductors” J. Mater. Chem. 2009, 19, 8560-8570.
    Yeshchenko, O. A.; Dmitruck, I. M.; Alexeenlo, A. A.; Kotko, A. V. “Surface Plasmon as a Probe for Melting of Silver Nanoparticles” Nanotechnol. 2010, 21, 1-6.
    Zhao, B.; Momose, T.; Shimogaki, Y. “Deposition of Cu-Ag Alloy Film by Supercritical Fluid Deposition” Jpn. J. Appl. Phys. 2006, 45, L1296-L1299.
    Zhao, B.; Momose, T.; Ohkubo, T.; Shimogaki, Y. “Acetone-Assisted Deposition of Silver Films in Supercritical Carbon Dioxide” Microelectron. Eng. 2008, 85, 675-681.
    Zong, Y; Watkins, J. J. “Deposition of Copper by the H2-Assisted Reduction of Cu(tmod)2 in Supercritical Carbon Dioxide: Kinetics and Reaction Mechanism” Chem. Mater. 2005, 17, 560-565.
    周更生、李賢學、高振裕、盧育杰,“奈米銀”,科學發展月刊,2006,408,32-39。
    陳仲宣,“前瞻奈米鍍膜技術與潛力市場探索”,經濟部ITIS專案辦公室,2004。

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE