簡易檢索 / 詳目顯示

研究生: 張庭禕
Chang, Ting-Yi
論文名稱: 鉬、釕雙重單原子之電催化劑運用於亞硝酸鹽還原
Mo, Ru Dual-Atom Sites Electrocatalysts for Nitrite Reduction Reaction
指導教授: 呂明諺
Lu, Ming-Yen
口試委員: 張育誠
Chang, Yu-Cheng
郭俊宏
Kuo, Chun-Hong
學位類別: 碩士
Master
系所名稱: 半導體研究學院 - 半導體研究學院
College of Semiconductor Research
論文出版年: 2025
畢業學年度: 113
語文別: 中文
論文頁數: 82
中文關鍵詞: 氨合成電催化雙重單原子催化劑亞硝酸鹽還原活化位點
外文關鍵詞: Ammonia Synthesis, Electrocatalysis, Dual-atom catalysts, Nitrite Reduction, Active Sites
相關次數: 點閱:43下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 氨對於大自然與人類都是十分重要的物質,被廣泛運用於工業、農業與醫學領域。而在儲能方面,由於具有高能量密度及碳中和等特性,也被視為十分具有潛力的物質;然而,工業上傳統的哈伯法製氨需要在嚴峻的環境下進行,還須使用石化燃料作為反應物,過程中會伴隨大量的溫室氣體產生,造成環境上的污染,因此本研究以電催化的方式進行亞硝酸鹽的還原。本研究以金屬有機框架所衍伸的含氮多孔碳材,並使鉬、釕雙金屬以單原子的形式分布其中作為電催化劑,並在中性電解液中進行亞硝酸鹽的還原反應。從實驗結果可知,Mo_SA/NC與Ru_SA/NC在電位 -0.4 V時皆具有最高的法拉第效率,分別是82.36%與78.01%,但兩者的產率卻只有36.63和 29.04 µmol h−1 mg−1;而含有兩種金屬的MoRu_SA/NC在同樣電位的法拉第效率則可上升至90.85%,且氨的產率可以達到60 µmol h−1 mg−1;此外當電位上升至-0.7 V,產率則能達到146.61 µmol h−1 mg−1;其中可以看到每種樣品都有不錯的最大法拉第效率,但雙重金屬單原子的結構卻能讓氨產率又提升了許多,其原因為雙重金屬單原子的結構擁有特殊的配位環境以及相鄰的活化位點,除了能使材料能有更好的電性,也能避免其他副反應的發生,因此能提升法拉第效率與氨產率。


    Ammonia (NH3) is such an important substance for both humans and nature, which is widely used in industry, agriculture and medical domain. In terms of energy storage, it is also regarded as a material with great potential due to its high energy density and carbon neutrality. However, the traditional Haber process for ammonia production needs to be carried out under harsh conditions, and must use petrochemical fuels as reactants. The process will be accompanied by releasing large amount of greenhouse gases, which makes environmental pollution even serious. Therefore, this study will use electrocatalyst to reduce nitrite.
    In this study, we demonstrate that Mo, Ru dual atom sites(MoRu_SA/NC)serves as nitrite reduction reaction electrocatalysts in neutral electrolytes. Mo_SA/NC and Ru_SA/NC exhibits Faraday efficiency of 82.36% and 78.01% at -0.4 V versus RHE, while the NH3 yield rate is only 36.63 and 29.04 µmol h−1 mg−1, respectively. At the same potential, the FE and the NH3 yield rate of MoRu_SA/NC can be increased to 90.85% and 60 µmol h−1 mg−1. The yield rate will climb to 146.61 µmol h−1 mg−1 with the potential increased to -0.7 V versus RHE. The dual metal sites significantly enhance the production rate, which is attributed to its special coordinate environment and neighbor active sites so that the electrical property will be better. Additionally, side reactions and by products can be inhibited. As a result, Mo, Ru dual atom sites achieve a boosted nitrite reduction reaction performance compared to Mo_SA/NC and Ru_SA/NC.

    摘要 II Abstract III 致謝 IV 目錄 V 圖目錄 1 表目錄 3 第一章 緒論與文獻探討 5 1.1 氨能源 5 1.2 常見氨合成方法 8 1.2.1 光催化氮還原 8 1.2.2 電催化氮還原 9 1.3 硝酸鹽類的還原 10 1.3.1 硝酸鹽類的危害 10 1.3.2 現有的處理方法 11 1.3.3 電催化硝酸鹽類的原理與優點 11 1.4 硝酸鹽類還原的反應機制 12 1.4.1 亞硝酸鹽還原反應之挑戰與反應途徑 12 1.4.2 硝酸鹽還原反應之挑戰與反應途徑 14 1.5 電催化硝酸鹽類還原的實驗裝置 16 1.5.1 硝酸鹽類還原反應槽 16 1.5.2 硝酸鹽類還原之電解液 17 1.5.3 硝酸鹽類還原之表現指標 18 1.5.4 氨產量之定量測定方法 19 (1)分光光度法(Spectrophotometry)19 (2)離子層析法(Ion Chromatography, IC) 21 (3)核磁共振光譜法(Nuclear magnetic resonance, NMR)21 1.6 催化劑的發展與設計 22 1.6.1 貴重金屬基底催化劑 22 1.6.2 過渡金屬基底催化劑 24 1.6.3 金屬單原子電催化劑 24 (1)金屬單原子取得之方法 24 (2)金屬單原子之分析方法 26 (3)已運用於電催化硝酸鹽類還原之金屬元素 27 1.6.4 雙重金屬單原子電催化劑 28 1.7 研究動機機 33 第二章 實驗方法與儀器 34 2.1 實驗架構 34 2.2 電催化劑之製備流程 35 2.2.1 MoRu-SA、Mo-SA 與 Ru-SA 的合成 35 2.2.2 工作電極製備 37 2.3 電化學分析之系統架設 38 2.3.1 電解液 38 2.3.2 離子交換膜 40 2.3.3 氣體 40 2.4 氨含量檢測方法 41 2.5 實驗儀器介紹 42 2.5.1 X 光繞射分析儀(X-Ray Diffractometer, XRD) 42 2.5.2 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 43 2.5.3 穿透式電子顯微鏡(Transmission Electron Microscope, TEM) 44 2.5.4 X 射線光電子能譜儀(X-ray Photoelectron Spectroscope, XPS) 46 2.5.5 紫外光-可見光吸收光譜儀(UV-Visible Spectroscope) 47 2.5.6 電化學分析儀(Electrochemical analyzer) 48 2.5.7 感應耦合電漿質譜儀(Inductively Coupled Plasma mass spectrometry, ICP-MS) 49 第三章 結果與討論 50 3.1 結構鑑定 50 3.1.1 XRD 分析 50 3.1.2 SEM 影像分析 52 3.1.3 TEM 分析 55 3.1.4 ICP-MS 分析 61 3.1.5 XPS 能譜分析 62 3.2 電催化表現分析 65 3.2.1 LSV 分析 66 3.2.2 I-t 分析 68 3.2.3 氨氣產量分析 70 3.2.4 亞硝酸鹽還原性能分析 72 3.2.5 穩定性測試 75 3.2.6 與其他文獻之產氨比較 76 3.2.7 結論 77 3.2.8 未來展望 79 參考文獻 80

    1. Xu J, et al. Breaking local charge symmetry of iron single atoms for efficient electrocatalytic nitrate reduction to ammonia.
    Angewandte Chemie International Edition 62, e202308044 (2023).
    2. Hu L, et al. Amorphous CoB nanoarray as a high-efficiency electrocatalyst for nitrite reduction to ammonia. Inorganic Chemistry Frontiers 9, 6075-6079 (2022).
    3. Ouyang L, et al. Recent advances in electrocatalytic ammonia synthesis.
    Chinese Journal of Catalysis 50, 6-44 (2023).
    4. Yue L, et al. Recent advance in heterogenous electrocatalysts for highly
    selective nitrite reduction to ammonia under ambient condition. Small
    Structures 4, 2300168 (2023).
    5. Smith C, Hill AK, Torrente-Murciano L. Current and future role of Haber–Bosch ammonia in a carbon-free energy landscape. Energy & Environmental Science 13, 331-344 (2020).
    6. Huang R, Li X, Gao W, Zhang X, Liang S, Luo M. Recent advances in
    photocatalytic nitrogen fixation: from active sites to ammonia quantification methods. RSC advances 11, 14844-14861 (2021).
    7. Murphy E, et al. Highly durable and selective Fe-and Mo-based atomically dispersed electrocatalysts for nitrate reduction to ammonia via distinct and synergized NO2–pathways. ACS Catalysis 12, 6651-6662 (2022).
    8. Du W, Sun Z, Chen K, Wang F, Chu K. Nb1-Zr dual active sites constructed on ZrO2 boost nitrite-to-ammonia electroreduction. Chemical Engineering Journal 481, 148733 (2024).
    9. Ke Z, et al. Selective NO x–Electroreduction to Ammonia on Isolated Ru Sites. ACS nano 17, 3483-3491 (2023).
    10. Zeng Y, Priest C, Wang G, Wu G. Restoring the nitrogen cycle by
    electrochemical reduction of nitrate: progress and prospects. Small Methods 4, 862000672 (2020).
    11. Wang H, et al. V-doped TiO2 nanobelt array for high-efficiency electrocatalytic nitrite reduction to ammonia. Materials Today Physics 30, 100944 (2023).
    12. Wang Y, et al. N‐Coordinated Cu–Ni Dual‐Single‐Atom Catalyst for Highly Selective Electrocatalytic Reduction of Nitrate to Ammonia. Small 19, 2207695 (2023).
    13. Clark CA, et al. Mechanistic insights into pH-controlled nitrite reduction to ammonia and hydrazine over rhodium. ACS catalysis 10, 494-509 (2019).
    14. Zhou L, Boyd CE. Comparison of Nessler, phenate, salicylate and ion selective electrode procedures for determination of total ammonia nitrogen in aquaculture. Aquaculture 450, 187-193 (2016).
    15. Thomas D, Rey M, Jackson P. Determination of inorganic cations and
    ammonium in environmental waters by ion chromatography with a high capacity cation-exchange column. Journal of Chromatography A 956, 181-186 (2002).
    16. Yu H, Zhang G, Cai Y, Dong F. Altering the substituents of salicylic acid to improve Berthelot reaction for ultrasensitive colorimetric detection of ammonium and atmospheric ammonia. Analytical and Bioanalytical Chemistry 413, 5695-5702 (2021).
    17. Xu G, Cai C, Wang T. Toward Sabatier optimal for ammonia synthesis with paramagnetic phase of ferromagnetic transition metal catalysts. Journal of the American Chemical Society 144, 23089-23095 (2022).
    18. Elaouni A, El Ouardi M, Zbair M, BaQais A, Saadi M, Ahsaine HA. ZIF-8 metal organic framework materials as a superb platform for the removal and photocatalytic degradation of organic pollutants: a review. RSC advances 12, 31801-31817 (2022).
    19. Bergaoui M, Khalfaoui M, Awadallah-F A, Al-Muhtaseb S. A review of the features and applications of ZIF-8 and its derivatives for separating CO2 and isomers of C3-and C4-hydrocarbons. Journal of Natural Gas Science and 87 Engineering 96, 104289 (2021).
    20. Murphy E, et al. Elucidating electrochemical nitrate and nitrite reduction over atomically-dispersed transition metal sites. Nature Communications 14, 4554 (2023).
    21. Wang F, Shang S, Sun Z, Yang X, Chu K. Electrocatalytic nitrite reduction to ammonia on In1Cu single atom alloy. Chemical Engineering Journal 489, 151410 (2024).
    22. Hanifpour F, Sveinbjornsson A, Canales CP, Skulason E, Flosadottir HD. Preparation of Nafion Membranes for Reproducible Ammonia Quantification in Nitrogen Reduction Reaction Experiments. Angewandte Chemie International Edition 59, 22938-22942 (2020).
    23. Wu Z-Y, et al. Electrochemical ammonia synthesis via nitrate reduction on Fe single atom catalyst. Nature communications 12, 2870 (2021).
    24. Zhu T, et al. Single‐atom Cu catalysts for enhanced electrocatalytic nitrate reduction with significant alleviation of nitrite production. Small 16, 2004526 (2020).
    25. Wang C, Zhou W, Sun Z, Wang Y, Zhang B, Yu Y. Integrated selective nitrite reduction to ammonia with tetrahydroisoquinoline semi-dehydrogenation over a vacancy-rich Ni bifunctional electrode. Journal of Materials Chemistry A 9, 239-243 (2021).
    26. Li X, et al. Ni nanoparticle-decorated biomass carbon for efficient electrocatalytic nitrite reduction to ammonia. Nanoscale 14, 13073-13077 (2022).
    27. Wen G, et al. Ni2P nanosheet array for high-efficiency electrohydrogenation of nitrite to ammonia at ambient conditions. Journal of Colloid and Interface Science 606, 1055-1063 (2022)

    QR CODE