簡易檢索 / 詳目顯示

研究生: 門瑩
Men, Yin
論文名稱: 基於SQMV演算法之視覺雷達融合車輛檢測系統
SQMV based Vision and Radar Fusion for Vehicle Detection
指導教授: 許雅三
Hsu, Yar-Sun
邱瀞德
Chiu, Ching-Te
口試委員: 許雅三
Hsu, Yar-Sun
邱瀞德
Chiu, Ching-Te
李政崑
Lee, Jenq-Kuen
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 電機工程學系
Department of Electrical Engineering
論文出版年: 2013
畢業學年度: 102
語文別: 英文
論文頁數: 59
中文關鍵詞: 車輛辨識融合系統雷達影像
外文關鍵詞: car recognition
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 汽車數量的高度增長帶來進階駕駛輔助系統( ADAS )的需求,為了讓駕駛在旅途中做出正確的判斷與決定,確保駕駛員獲得周圍環境和可能障礙物(特別是車輛)的所有資訊是很重要的。為了實現這一目標,越來越多的研究投入在研發準確的車輛檢測系統。在本篇論文中,我們提出了一個融合雷達和影像的車輛檢測系統,這個系統同時具有雷達的高距離準確率以及影像的直觀於人眼這兩項優勢,可以獲得精準的位置和輪廓資訊。藉著投設雷達的數據結果於視覺圖像上,降低了系統在搜尋障礙物的影像處理中的複雜性和運算時間。我們使用一個影像紋理分類演算法:Sorted Quadrant Median Vector( SQMV )來獲取垂直和水平的邊緣圖[1] ,並利用這些邊緣圖開發一個演算法來判斷圖像中是否存在車輛。實驗結果表明,我們的系統在使用MIT CBCL車輛數據庫[2]來做模擬時能夠達到98 %的檢出率以及2.53%的false positive rate.。此外,我們也將SQMV邊緣檢測演算法利用TSMC 90nm技術合成電路。該系統可以達到333 MHz的頻率,換言之,輸入一張128*128的影像並計算出水平垂直邊緣圖只需要50μs。


    The growing of vehicle number brings about the needs of driver assistance system. For drivers
    to make the right decisions during the journey, it is important to make sure that drivers
    obtain all the information of surrounding environment and possible obstacles, especially
    vehicles. To achieve this goal, a growing number of papers dedicate in nding accurately
    vehicle detection. In this thesis, we propose a fusion vehicle detection system by combining
    the advantages of both radar and camera sensors. By applying radar data onto the vision
    image, an increasing accuracy of both position and contour is achieved. This system reduces
    the complexity and computing time in image processing for obstacle search. Here, a texture
    classi ed algorithm: Sorted Quadrant Median Vector (SQMV) is used to obtain the vertical
    and horizontal edge maps [1]. Based on these edge maps, we developed an algorithm to
    determine the existence of a vehicle in an image. The experiment results using MIT CBCL
    car database [2] demonstrate that this system can reach 98% detection rate with false positive
    rate 2.53%. In the last part of the thesis, a hardware model of SQMV edge detection is also
    implemented. The system can reach a frequency of 333 MHz, which means it takes only
    50s to calculate the edge maps for a 128*128 image.

    Contents Abstract i Abstract(Chinese) ii Contents iii 1 Introduction 1 1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.2 Problem description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.3 Goal and contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 Related work 5 2.1 Vehicle detection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Pure vision system . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.2 Fusion system . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 2.2 SQMV texture classi cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3 SQMV based vehicle detection 15 3.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15 3.2 Radar and image calibration . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 3.3 SQMV based edge detection . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 3.4 SQMV based vehicle detection algorithm . . . . . . . . . . . . . . . . . . . . 21 4 Simulation Results 28 4.1 Radar and image calibration . . . . . . . . . . . . . . . . . . . . . . . . . . 28 4.2 SQMV parameters testing . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 4.3 Contour graph comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 4.4 SQMV- based algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 4.5 Overall system implementation . . . . . . . . . . . . . . . . . . . . . . . . . 37 5 Hardware implementation 40 5.1 System overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 5.2 9-element sorting module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 5.3 4-element sorting module . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 5.4 simulation and synthesis results . . . . . . . . . . . . . . . . . . . . . . . . . 44 6 Conclusion 46 Bibliography 47

    [1] C.-H. Lin, J.-S. Tsai, and C.-T. Chiu, \Switching bilateral lter with a texture/noise detector for universal noise removal," Image Processing, IEEE Transactions on, vol. 19, no. 9, pp. 2307{2320, 2010.
    [2] (2013, Oct.). [Online]. Available: http://cbcl.mit.edu/software-datasets/CarData.html
    [3] (2013, Oct.). [Online]. Available: http://on-demand.gputechconf.com/gtc/2013/
    presentations/S3413-Advanced-Driver-Assistance-Systems-ADAS.pdf
    [4] (2013, Oct.). [Online]. Available: http://www.eetimes.com/document.asp?doc id=
    1271493
    [5] Z. Yankun, C. Hong, and N. Weyrich, \A single camera based rear obstacle detection
    system," in Intelligent Vehicles Symposium (IV), 2011 IEEE. IEEE, 2011, pp. 485{490.
    [6] T. Wang, J. Xin, and N. Zheng, \A method integrating human visual attention and
    consciousness of radar and vision fusion for autonomous vehicle navigation," in Space
    Mission Challenges for Information Technology (SMC-IT), 2011 IEEE Fourth Interna-
    tional Conference on. IEEE, 2011, pp. 192{197.
    [7] C.-T. Chiu and C.-J.Wu, \Texture classi cation based low order local binary pattern for
    face recognition," in Image Processing (ICIP), 2011 18th IEEE International Conference
    on. IEEE, 2011, pp. 3017{3020.
    [8] Z. Sun, G. Bebis, and R. Miller, \On-road vehicle detection: A review," Pattern Analysis
    and Machine Intelligence, IEEE Transactions on, vol. 28, no. 5, pp. 694{711, 2006.
    47
    [9] Y. Fang, I. Masaki, and B. Horn, \Distance/motion-based segmentation under heavy
    background noise," in Intelligent Vehicle Symposium, 2002. IEEE, vol. 2. IEEE, 2002,
    pp. 483{488.
    [10] M. Bertozzi and A. Broggi, \Gold: A parallel real-time stereo vision system for generic
    obstacle and lane detection," Image Processing, IEEE Transactions on, vol. 7, no. 1,
    pp. 62{81, 1998.
    [11] Y.-T. Yang, \Study of Ecient Multiple Object Detection and Hardware Implementa-
    tion," Master's thesis, National Tsing Hua University, Taiwan, 2013.
    [12] Y. Fang, I. Masaki, and B. Horn, \Depth-based target segmentation for intelligent
    vehicles: Fusion of radar and binocular stereo," Intelligent Transportation Systems,
    IEEE Transactions on, vol. 3, no. 3, pp. 196{202, 2002.
    [13] S. Wu, S. Decker, P. Chang, T. Camus, and J. Eledath, \Collision sensing by stereo
    vision and radar sensor fusion," Intelligent Transportation Systems, IEEE Transactions
    on, vol. 10, no. 4, pp. 606{614, 2009.
    [14] M. Haberjahn and R. Reulke, \Object discrimination and tracking in the surroundings
    of a vehicle by a combined laser scanner stereo system," in Computer Vision{ACCV
    2010 Workshops. Springer, 2011, pp. 225{234.
    [15] M. Mahlisch, R. Hering, W. Ritter, and K. Dietmayer, \Heterogeneous fusion of video,
    lidar and esp data for automotive acc vehicle tracking," in Multisensor Fusion and
    Integration for Intelligent Systems, 2006 IEEE International Conference on. IEEE,
    2006, pp. 139{144.
    [16] J. Wang, Z. Liu, S. Yi, and K. Li, \Target vehicle selection based on multi features
    fusion method," in Intelligent Vehicles Symposium (IV), 2010 IEEE. IEEE, 2010, pp.
    13{19.
    [17] M. Aly, \Real time detection of lane markers in urban streets," in Intelligent Vehicles Symposium, 2008 IEEE. IEEE, 2008, pp. 7{12.

    [18] (2013, Sep.). [Online]. Available: http://www.csgnetwork.com/stopdistcalc.html
    [19] C. Papageorgiou and T. Poggio, \A trainable object detection system: Car detection in
    static images," Tech. Rep. 1673, October 1999, (CBCL Memo 180).
    [20] M. Oren, C. Papageorgiou, P. Sinha, E. Osuna, and T. Poggio, \Pedestrian detection
    using wavelet templates," 1997, pp. 193{99.
    [21] C. Papageorgiou, M. Oren, and T. Poggio, \A general framework for object detection,"
    in Proceedings of 6th International Conference on Computer Vision, 1998.
    [22] C. Papageorgiou, \A trainable system for object detection in images and video se-quences," Technical Report 1685, 2000.
    [23] C. Papageorgiou and T. Poggio, \A trainable system for object detection," 2000, in press.
    [24] (2013, Sep.). [Online]. Available: http://cogcomp.cs.illinois.edu/Data/Car/4

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE