研究生: |
王譯辰 Wang, Yi-Chen |
---|---|
論文名稱: |
中高齡與高齡族群之腳眼協調策略分析:以足部定位為例 The analysis of foot-eye coordination strategies among middle-aged and elderly adults: An example of foot positioning tasks |
指導教授: |
盧俊銘
Lu, Jun-Ming |
口試委員: |
李昀儒
Lee, Yun-Ju 詹雨臻 Chan, Yu-Chen |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 工業工程與工程管理學系 Department of Industrial Engineering and Engineering Management |
論文出版年: | 2018 |
畢業學年度: | 106 |
語文別: | 中文 |
論文頁數: | 133 |
中文關鍵詞: | 主成分分析 、集群分析 、步態 、視線軌跡 、動作策略 |
外文關鍵詞: | Principal Component Analysis, Cluster Analysis, gait, gaze behavior, motion strategy |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在台灣,隨著人口結構老化,高齡者的照護需求成為急需因應的問題,而跌倒不僅是高齡者主要的事故傷害之一,伴隨的照護人力、資源的花費更是可觀。因此,本研究以預防跌倒為目的,分析中高齡與高齡族群在不同情境下執行足部定位任務時所採取的腳眼協調策略,並與表現績效連結;後續依照參與者所採取的腳眼協調策略的動作、視線特徵,提供可行之改善建議,期能提昇參與者之績效表現,以降低在居家環境跌倒之風險、減輕社會負擔。
本研究招募40位參與者,其中20位為55歲以上之中高齡與高齡族群(男性10人、女性10人;平均年齡:64.3歲),另有20位為20至30歲之年輕族群(男性10人、女性10人;平均年齡:23.3歲)做為對照組,藉以觀察身體機能較佳者所採取之腳眼協調策略。參與者裸視或矯正後視力需達0.5以上,並以「柏格氏平衡量表(Berg Balance Scale, BBS)總分41分以上、計時起身行走(Timed Up & Go Test, TUG)完成時間在12秒以內」做為行動能力篩選基準,藉此減少年齡以外之個人差異造成的影響。
為探討腳眼協調策略對任務績效指標的影響,以及討論個人因素、環境因素對腳眼協調策略影響,實驗為三因子混合設計,第一個因子─個人因素(年齡族群)─為參與者間因子,有兩種等級(中高齡與高齡族群、年輕族群),其餘兩個因子─環境因素(障礙物高度、障礙物擺放距離)─為參與者內因子,其中,障礙物高度包含三種障礙物高度(0公分、5公分、10公分),障礙物擺放距離則包含兩種障礙物在踩踏目標前之距離(一步距、兩步距),因此,總共有六種不同複雜度的任務。每次試驗中,參與者都必須從起點位置出發往前走,在跨越踩踏目標前的障礙物後,將雙腳踩在終點上的指定目標內,並以足部定位精準度、任務完成時間為主任務績效指標。此外,走道前方2公尺的螢幕會在每次試驗中皆會於參與者踩踏目標之前導腳腳趾離地、抬至最高點時依序顯示兩種不同顏色(紅、橙、黃、綠、藍、紫等六色中隨機挑選兩種,但互不為互補色、鄰近色),參與者在雙腳定位後即回答所看到螢幕中之顏色,以評估視覺次任務之績效(有無答對顏色)。實驗中以紅外線動作擷取系統蒐集參與者之下肢動作,輔以穿戴式眼球軌跡追蹤儀記錄參與者之視線行為。
在資料的預處理上,將每位參與者踩踏目標前四步中的每一步週期標準化並切為10等分,以每步的第0、10、20、…、100百分比(percent)做為關鍵影格(key frame),總計41個關鍵影格;並蒐集每個關鍵影格中的頸椎、脊椎、雙腳髖關節、膝關節與踝關節的屈曲/伸展(flexion/extension)角度以及眼球垂直方向轉動角度等共9項變數。
接著利用主成分分析(Principal Component Analysis, PCA)擷取11個累積解釋變異量達71.7%之主成分(Principal Component, PC),並定義為11種不同的腳眼協調特徵,再根據主成分分數(PC score),利用集群分析(cluster analysis)將樣本分群並定義出四種腳眼協調策略:策略1「彎腰踩踏目標」、策略2「踩踏目標時抬高下肢」、策略3「在踩踏目標前一步抬高下肢、再平穩踩踏」、策略4「視線向前」。隨後使用混合線性模型(linear mixed model)探討腳眼協調特徵對主任務績效指標(足部定位精準度、任務完成時間)的影響,另利用羅吉斯迴歸(logistic regression)檢定腳眼協調特徵與視覺次任務(有無答對顏色)的關聯性。
結果顯示:多數腳眼協調特徵對主任務或次任務的績效表現有顯著影響。在不同腳眼協調特徵中,有關視線角度的腳眼協調特徵與參與者的任務表現較相關,即適當的視線轉移有助於提高足部定位精準度或顏色回答正確率。此外,因參與者之注意力資源有限,需在不同績效(踩踏誤差、任務完成時間、有無答對顏色)之間進行注意力分配的取捨,並無任何腳眼協調特徵可反映兼顧較佳之主任務與次任務績效。再探討個人因素(年齡族群)、環境因素(障礙物擺放位置、高度)對腳眼協調特徵之影響,發現中高齡與高齡族群之腳眼協調特徵與年輕族群不同,在以前導腳踩踏目標的前期,中高齡與高齡族群身體前彎之角度較年輕族群大;另環境因素亦對腳眼協調特徵有顯著影響,參與者普遍會依障礙物之擺放位置、高度調整下肢抬舉的高度。最後探討腳眼協調策略對績效指標的影響,結果顯示策略4(視線向前)之足部定位精準度最差,且此策略多為中高齡與高齡族群所採取,會在以跟隨腳踩踏目標前期將視線從目標上提早轉移到前方螢幕上。根據文獻,建議採取策略4之參與者在腳跟接觸目標後再將視線轉離,以提昇足部定位精準度。
Falls are one of the most important issues among middle-aged and elderly populations. It is hence needed to develop early interventions for reducing their falling risk. Therefore, this study aims to help prevent falls among middle-aged and elderly people by analyzing their foot-eye coordination strategies while performing foot positioning tasks under different conditions.
40 participants were recruited in this study, including 20 middle-aged and elderly people above 55 years old (10 males and 10 females; mean age= 64.3 years) and 20 young adults in the range of 20 to 30 years old (10 males and 10 females; mean age= 23.3 years). All participants had 20/40 vision or better, achieved a score higher than 41 on Berg Balance Scale (BBS), completed Timed Up & Go Test (TUG) in no more than 12 seconds, and self-reported no known musculoskeletal or neurological impairments.
The experiment was a three-way mixed model design. One factor was between-subject (individual difference: age), while the other two were within-subject (environmental factors: obstacle height and position). There were 2 levels of age (young, elderly), 3 levels of obstacle height (0cm, 5cm, 10cm), and 2 levels (1step, 2steps) of the distance between the obstacle and the target. Hence, there is a total of six different conditions. Each participant was asked to walk from the starting position and step over the obstacle while positioning both feet onto specified targets. The positioning error and completion time were defined as the performance measure of the primary task. Besides, two different colors were displayed from leading foot’s toe-off to mid-swing and from mid-swing to heel-strike of the leading foot respectively. The participant had to recall the colors being seen as the performance measure of secondary task. Each participant was required to wear the eye-tracking glasses and motion capture suit, for collecting gaze behavior and motion data.
The last four steps before the participants’ both feet stepping on the target were considered. Each step was divided into 10 time-equivalent segments. Thus, 40 segments with 41 key frames were generated for each trial. There are 9 parameters obtained, including the flexion/extension angles of neck, spine, hips, knees, and ankles, as well as the vertical gaze angle.
Principal component analysis (PCA) was first conducted with the gait and gaze data collected. 11 Principal components (PCs) accounted in total of 71.7% of variance were extracted. Cluster analysis was then used to determine four different strategies based on the PC scores, including bending the trunk (strategy 1), lifting the leg high while stepping on target (strategy 2), lifting the leg high as one-step before stepping on target (strategy 3), walking and looking ahead (strategy 4). Linear mixed model was then performed to test if foot-eye coordinations affect the performance of the primary task (foot positioning and completion time), while logistic regression was performed to find out if different coordinations result in different performance of the secondary task (percentage of correct responses).
It was found that the foot-eye coordinations which were related to gaze behavior had higher correlations with the performance of the tasks. In other words, a proper gaze transfer would contribute to better foot positioning or higher percentage of correct responses of the secondary task. Also, trade-offs between the primary and the secondary tasks in visual attention were found. Therefore, there was no specific strategy contributing to better performance for both primary and secondary tasks. Besides, strategy 4 had the worst performance of foot positioning task, and this strategy was adopted more by middle-aged and elderly people. It showed that the participants who adopted strategy 4 had earlier gaze transfer to the monitor for displaying secondary task, leading to the larger foot positioning errors. Based on the literature review, it is suggested that participants who took strategy 4 should not transfer gaze until heel-contact on the target to enhance the foot positioning accuracy and reduce the falling risk.
中文部分:
1. 內政部統計處(2018)。內政部統計月報1.5-現住人口按三段、六歲年齡組分。取自:https://www.moi.gov.tw/files/site_stuff/321/1/month/month.html
2. 王信忠與余清祥(2008)。人口老化對全民健保醫療費用影響之探討。二十一世紀的台灣 社會脈動—婦幼人口發展與健康政策] 國際學術研討會,中華婦幼發展協會,國立政治大學社會科學學院主辦 (2008 年 2 月 26 日)。
3. 台北市政府社會局(2017)。健保費補助及健康維護。取自:http://www.dosw.gov.taipei/ct.asp?xItem=86889685&ctNode=71217&mp=107001
4. 张丽、瓮长水、王秋华、黎春华、郭燕梅、陈蔚、李晓瑛與季红梅(2010)。前庭感觉, 本体感觉及视觉功能对老年人跌倒风险影响的因素分析。中国康复理论与实践(1),16-18。
5. 张森、李京诚、徐守森、高晓东與江智(2007)。眼动仪的开发现状及其在运动心理领域的应用。首都体育学院学报,19(2),43-45。
6. 李宗育、陸鳳屏、與詹鼎正(2014)。老年人跌倒之危險因子,評估,及預防。內科學誌(Vol. 25,137-142頁)。
7. 洪秀娟、楊榮森與曹昭懿(2005)。台灣髖部骨折之流行病學。臺灣醫學,9(1),29-38。
8. 國家發展委員會(2013)。全球人口老化之現狀與趨勢。取自:https://www.ndc.gov.tw/cp.aspx?n=4AE5506551531B06
9. 國家發展委員會(民105年08月22日)。中華民國人口推估(105至150年)。取自:https://www.ndc.gov.tw/News_Content.aspx?n=114AAE178CD95D4C&s=EBA2EB94A133AE1E
10. 張淳皓、林國全與何金山(2014)。老年人平衡控制能力之文獻回顧。屏東教大體育第 17 期。
11. 黃喜南與楊榮森(2010)。老年人髖部骨折手術前後的考量。台灣老年醫學暨老年學雜誌,5(1),22-35。
12. 劉洪瑞、邱文信與劉貞勇(2012)。眼動儀在運動研究之應用。屏東教大體育(15), 154-165。
13. 衛生福利部國民健康署(民104年01月27日a)。五老有一跌,十跌有三傷,防跌保健康。取自: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1127與pid=1878
14. 衛生福利部國民健康署(民104年01月26日b)。老人跌倒的問題有多嚴重? 取自:https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=807與pid=4326
15. 衛生福利部國民健康署(民104年01月27日c)。老人跌倒常見的危險因子有那些? 取自:https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=807與pid=4327
16. 衛生福利部國民健康署(民105年06月28日a)。老化海嘯襲臺灣,23鄉鎮超高齡,89%老人有慢性病!健康局成立10週年,公佈台灣老化地圖。取自: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1131&pid=2276
17. 衛生福利部國民健康署(民105年08月10日b)。驚!1/6的老人有跌倒經驗 防跌從日常生活做起。取自: https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=1136與pid=3145
18. 衛生福利部國民健康署(2006)。保命防跌寶典。取自:
http://www.lshosp.com.tw/safe/PDF/%E4%BF%9D%E5%91%BD%E9%98%B2%E8%B7%8C%E5%AF%B6%E5%85%B8.pdf
外文部分:
1. Akiyama, Y., Toda, H., Ogura, T., Okamoto, S., & Yamada, Y. (2018). Classification and analysis of the natural corner curving motion of humans based on gait motion. Gait & posture, 60, 15-21.
2. Anastasopoulos, D., Ziavra, N., Savvidou, E., Bain, P., & Bronstein, A.M. (2011). Altered eye‐to‐foot coordination in standing parkinsonian patients during large gaze and whole‐body reorientations. Movement Disorders, 26(12), 2201-2211.
3. Antonuccl, T.C., Okorodudu, C., & Aklyama, H. (2002). Well-Being Among Older Adults on Different Continents. Journal of Social Issues, 618-618.
4. Böhm, H., Oestreich, C., Schäfer, C., Dussa, C., & Döderlein, L. (2017). O2: Cluster analysis to identify foot motion patterns in children with flexible flatfeet–A statistical approach to detect decompensated pathology. Gait & posture, 57, 3.
5. Barrett, R., Mills, P., & Begg, R. (2010). A systematic review of the effect of ageing and falls history on minimum foot clearance characteristics during level walking. Gait & posture, 32(4), 429-435.
6. Bauman, A., Merom, D., Bull, F.C., Buchner, D.M., & Fiatarone Singh, M.A. (2016). Updating the evidence for physical activity: summative reviews of the epidemiological evidence, prevalence, and interventions to promote “Active Aging”. The Gerontologist, 56(Suppl_2), S268-S280.
7. Begg, R., Best, R., Dell’Oro, L., & Taylor, S. (2007). Minimum foot clearance during walking: strategies for the minimisation of trip-related falls. Gait & posture, 25(2), 191-198.
8. Berg, K.O., Wood-Dauphinee, S.L., Williams, J.I., & Maki, B. (1992). Measuring balance in the elderly: validation of an instrument. Canadian journal of public health= Revue canadienne de sante publique, 83, S7-11.
9. Best, R., & Begg, R. (2008). A method for calculating the probability of tripping while walking. Journal of biomechanics, 41(5), 1147-1151.
10. Bischoff, H.A., Stähelin, H.B., Monsch, A.U., Iversen, M.D., Weyh, A., Von Dechend, M., Akos, R., Conzelmann, M., Dick, W., & Theiler, R. (2003). Identifying a cut‐off point for normal mobility: a comparison of the timed ‘up and go’test in community‐dwelling and institutionalised elderly women. Age and ageing, 32(3), 315-320.
11. Bohannon, R.W. (1997). Comfortable and maximum walking speed of adults aged 20-79 years: reference values and determinants. Age and ageing, 26(1), 15-19.
12. Campbell, A.J., Robertson, M.C., La Grow, S.J., Kerse, N.M., Sanderson, G.F., Jacobs, R.J., Sharp, D.M., & Hale, L.A. (2005). Randomised controlled trial of prevention of falls in people aged ≥ 75 with severe visual impairment: the VIP trial. Bmj, 331(7520), 817.
13. Chang, J.T., Morton, S.C., Rubenstein, L.Z., Mojica, W.A., Maglione, M., Suttorp, M.J., Roth, E.A., & Shekelle, P.G. (2004). Interventions for the prevention of falls in older adults: systematic review and meta-analysis of randomised clinical trials. Bmj, 328(7441), 680.
14. Chapman, G.J., & Hollands, M.A. (2006). Evidence for a link between changes to gaze behaviour and risk of falling in older adults during adaptive locomotion. Gait & posture, 24(3), 288-294.
15. Chapman, G.J., & Hollands, M.A. (2007). Evidence that older adult fallers prioritise the planning of future stepping actions over the accurate execution of ongoing steps during complex locomotor tasks. Gait & posture, 26(1), 59-67.
16. Chapman, G.J., & Hollands, M.A. (2010). Age-related differences in visual sampling requirements during adaptive locomotion. Experimental Brain Research, 201(3), 467-478.
17. Chester, V.L., & Wrigley, A.T. (2008). The identification of age-related differences in kinetic gait parameters using principal component analysis. Clinical Biomechanics, 23(2), 212-220.
18. Chodzko-Zajko, W.J., Proctor, D.N., Singh, M.A.F., Minson, C.T., Nigg, C.R., Salem, G.J., & Skinner, J.S. (2009). Exercise and physical activity for older adults. Medicine & science in sports & exercise, 41(7), 1510-1530.
19. Chu, L.-W., Chi, I., & Chiu, A.Y.Y. (2007). Falls and fall-related injuries in community-dwelling elderly persons in Hong Kong: A study on risk factors, functional decline, and health services utilization after falls. Hong Kong Med J 2007;13(1), S8-12.
20. Clemson, L., Cumming, R.G., Kendig, H., Swann, M., Heard, R., & Taylor, K. (2004). The effectiveness of a community‐based program for reducing the incidence of falls in the elderly: A randomized trial. Journal of the American Geriatrics Society, 52(9), 1487-1494.
21. Cress, M.E., Schechtman, K.B., Mulrow, C.D., Fiatarone, M.A., Gerety, M.B., & Buchner, D.M. (1995). Relationship Between Physical Performance and Self‐Perceived Physical Function. Journal of the American Geriatrics Society, 43(2), 93-101.
22. Curzon-Jones, B. T., & Hollands, M. A. (2018). Route previewing results in altered gaze behaviour, increased self-confidence and improved stepping safety in both young and older adults during adaptive locomotion. Experimental brain research, 236(4), 1077-1089.
23. Daffertshofer, A., Lamoth, C. J., Meijer, O. G., & Beek, P. J. (2004). PCA in studying coordination and variability: a tutorial. Clinical biomechanics, 19(4), 415-428.
24. Di Fabio, R.P., Greany, J.F., & Zampieri, C. (2003). Saccade-stepping interactions revise the motor plan for obstacle avoidance. Journal of motor behavior, 35(4), 383-397.
25. Endo, Y., Tada, M., & Mochimaru, M. (2014). Dhaiba: development of virtual ergonomic assessment system with human models. In Proceedings of the 3rd International Digital Human Modeling Symposium, Paper (Vol. 58).
26. Eng, J.J., Winter, D.A., & Patla, A.E. (1994). Strategies for recovery from a trip in early and late swing during human walking. Experimental Brain Research, 102(2), 339-349.
27. Espy, D. D., Yang, F., Bhatt, T., & Pai, Y. C. (2010). Independent influence of gait speed and step length on stability and fall risk. Gait & posture, 32(3), 378-382.
28. Fontana, F.E., Uding, A., Cleneden, A., Cain, L., Shaddox, L.A., & Mack, M.G. (2014). A comparison of gaze behavior among elderly and younger adults during locomotor tasks. Brazilian journal of motor behavior, 8(1).
29. Gillespie, L.D., Robertson, M.C., Gillespie, W.J., Lamb, S.E., Gates, S., Cumming, R.G., & Rowe, B.H. (2009). Interventions for preventing falls in older people living in the community. Cochrane Database Syst Rev, 2(2).
30. Grossmann, K. Bare Bones: Calcium and Natural Sources of Vitamins A, D & K2. Retrieved from https://blog.radiantlifecatalog.com/bare-bones-calcium-and-natural-sources-of-vitamins-a-d-k2
31. Gulde, P., & Hermsdörfer, J. (2017, September). A Comparison of Smoothing and Filtering Approaches Using Simulated Kinematic Data of Human Movements. In International Symposium on Computer Science in Sport (pp. 97-102). Springer, Cham.
32. Harwood, R.H., Foss, A., Osborn, F., Gregson, R., Zaman, A., & Masud, T. (2005). Falls and health status in elderly women following first eye cataract surgery: a randomised controlled trial. British Journal of Ophthalmology, 89(1), 53-59.
33. Hollands, M., Hollands, K., & Rietdyk, S. (2017). Visual control of adaptive locomotion and changes due to natural ageing. In Locomotion and Posture in Older Adults (pp. 55-72). Springer, Cham.
34. Hollands, M.A., & Marple-Horvat, D.E. (2001). Coordination of eye and leg movements during visually guided stepping. Journal of motor behavior, 33(2), 205-216.
35. Hollands, M.A., Marple-Horvat, D.E., Henkes, S., & Rowan, A.K. (1995). Human eye movements during visually guided stepping. Journal of motor behavior, 27(2), 155-163.
36. Horak, F.B. (2006). Postural orientation and equilibrium: what do we need to know about neural control of balance to prevent falls? Age and ageing, 35(suppl_2), ii7-ii11.
37. Howe, T.E., Rochester, L., Neil, F., Skelton, D.A., & Ballinger, C. (2011). Exercise for improving balance in older people. The Cochrane Library.
38. Karlsson, M.K., Magnusson, H., von Schewelov, T., & Rosengren, B. (2013). Prevention of falls in the elderly - a review. Osteoporosis international, 24(3), 747-762.
39. Kliegl, R., Wei, P., Dambacher, M., Yan, M., & Zhou, X. (2011). Experimental effects and individual differences in linear mixed models: Estimating the relationship between spatial, object, and attraction effects in visual attention. Frontiers in Psychology, 1, 238.
40. Kowler, E., Anderson, E., Dosher, B., & Blaser, E. (1995). The role of attention in the programming of saccades. Vision research, 35(13), 1897-1916.
41. Latham, N.K., Anderson, C.S., Lee, A., Bennett, D.A., Moseley, A., & Cameron, I.D. (2003). A randomized, controlled trial of quadriceps resistance exercise and vitamin D in frail older people: the Frailty Interventions Trial in Elderly Subjects (FITNESS). Journal of the American Geriatrics Society, 51(3), 291-299.
42. Lord, S.R., & Ward, J.A. (1994). Age-associated differences in sensori-motor function and balance in community dwelling women. Age and ageing, 23(6), 452-460.
43. Lord, S.R., Ward, J.A., & Williams, P. (1996). Exercise effect on dynamic stability in older women: a randomized controlled trial. Archives of physical medicine and rehabilitation, 77(3), 232-236.
44. Lord, S.R., Ward, J.A., Williams, P., & Anstey, K.J. (1993). An epidemiological study of falls in older community‐dwelling women: the Randwick falls and fractures study. Australian and New Zealand Journal of Public Health, 17(3), 240-245.
45. Marquandt, D. (1980). You should standardize the predictor variables in your regression models. Discussion of: A critique of some ridge regression methods. Journal of the American Statistical Association, 75(369), 87-91.
46. McKiernan, F.E. (2005). A simple Gait‐Stabilizing device reduces outdoor falls and nonserious injurious falls in Fall‐Prone older people during the winter. Journal of the American Geriatrics Society, 53(6), 943-947.
47. Menant, J. C., St George, R. J., Fitzpatrick, R. C., & Lord, S. R. (2010). Impaired depth perception and restricted pitch head movement increase obstacle contacts when dual-tasking in older people. Journals of Gerontology Series A: Biomedical Sciences and Medical Sciences, 65(7), 751-757.
48. Muir, B. C., Haddad, J. M., Heijnen, M. J., & Rietdyk, S. (2015). Proactive gait strategies to mitigate risk of obstacle contact are more prevalent with advancing age. Gait & posture, 41(1), 233-239.
49. Nashner, L.M. (2014). Practical biomechanics and physiology of balance. Balance Function Assessment and Management, 431.
50. NaturalPoint. (2016). Baseline (37). Retrieved from https://v20.wiki.optitrack.com/index.php?title=Baseline_(37)
51. Northridge, M.E., Nevitt, M.C., Kelsey, J.L., & Link, B. (1995). Home hazards and falls in the elderly: the role of health and functional status. American journal of public health, 85(4), 509-515.
52. Oatis, C.A. (2009). Kinesiology: the mechanics and pathomechanics of human movement: Lippincott Williams & Wilkins.
53. Osteo+. Retrieved from http://www.justinbarr.co.uk/
54. Pan, H. F., Hsu, H. C., Chang, W. N., Renn, J. H., & Wu, H. W. (2016). Strategies for obstacle crossing in older adults with high and low risk of falling. Journal of physical therapy science, 28(5), 1614-1620.
55. Patla, A.E. (1997). Understanding the roles of vision in the control of human locomotion. Gait & posture, 5(1), 54-69.
56. Paulus, W., Straube, A., & Brandt, T. (1984). Visual stabilization of posture: physiological stimulus characteristics and clinical aspects. Brain, 107(4), 1143-1163.
57. Piirtola, M., Isoaho, R., & Kivelä, S. (2003). Physical exercise is an advantageous and effective way to prevent falls and injuries due to falls. Duodecim; lääketieteellinen aikakauskirja, 119(7), 599.
58. Punj, G., & Stewart, D.W. (1983). Cluster analysis in marketing research: Review and suggestions for application. Journal of marketing research, 134-148.
59. Reynolds, R. F., & Day, B. L. (2005). Visual guidance of the human foot during a step. The Journal of physiology, 569(2), 677-684.
60. Sato, Y., Kaji, M., & Oizomi, K. (1999). An alternative to vitamin D supplementation to prevent fractures in patients with MS. Neurology, 53(2), 437-437-a.
61. Schillings, A., Van Wezel, B., Mulder, T., & Duysens, J. (2000). Muscular responses and movement strategies during stumbling over obstacles. Journal of Neurophysiology, 83(4), 2093-2102.
62. Song, G. Y., Zhao, Z. H., Ding, Y., Bai, Y. X., Wang, L., He, H., ... & Xu, T. M. (2014). Reliability assessment and correlation analysis of evaluating orthodontic treatment outcome in Chinese patients. International journal of oral science, 6(1), 50.
63. Steffen, T.M., Hacker, T.A., & Mollinger, L. (2002). Age-and gender-related test performance in community-dwelling elderly people: Six-Minute Walk Test, Berg Balance Scale, Timed Up & Go Test, and gait speeds. Physical therapy, 82(2), 128-137.
64. Stone, E., & Skubic, M. (2011). Evaluation of an inexpensive depth camera for in-home gait assessment. Journal of Ambient Intelligence and Smart Environments, 3(4), 349-361.
65. Subhash, S. (1996). Applied multivariate techniques. John Wily & Sons Inc., Canada.
66. Swanenburg, J., de Bruin, E.D., Stauffacher, M., Mulder, T., & Uebelhart, D. (2007). Effects of exercise and nutrition on postural balance and risk of falling in elderly people with decreased bone mineral density: randomized controlled trial pilot study. Clinical Rehabilitation, 21(6), 523-534.
67. Tanawongsuwan, R., & Bobick, A. (2001). Gait recognition from time-normalized joint-angle trajectories in the walking plane. In Computer Vision and Pattern Recognition, 2001. CVPR 2001. Proceedings of the 2001 IEEE Computer Society Conference on Kauai, Hawaii, USA(Vol. 2, pp. II-II).
68. Thelen, D.G., Schultz, A.B., Alexander, N.B., & Ashton-Miller, J.A. (1996). Effects of age on rapid ankle torque development. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 51(5), M226-M232.
69. Thelen, D.G., Wojcik, L.A., Schultz, A.B., Ashton-Miller, J.A., & Alexander, N.B. (1997). Age differences in using a rapid step to regain balance during a forward fall. The Journals of Gerontology Series A: Biological Sciences and Medical Sciences, 52(1), M8-M13.
70. Tinetti, M.E., Speechley, M., & Ginter, S.F. (1988). Risk factors for falls among elderly persons living in the community. New England journal of medicine, 319(26), 1701-1707.
71. Trombetti, A., Hars, M., Herrmann, F.R., Kressig, R.W., Ferrari, S., & Rizzoli, R. (2011). Effect of music-based multitask training on gait, balance, and fall risk in elderly people: a randomized controlled trial. Archives of internal medicine, 171(6), 525-533.
72. Uiga, L., Cheng, K.C., Wilson, M.R., Masters, R.S., & Capio, C.M. (2015). Acquiring visual information for locomotion by older adults: A systematic review. Ageing research reviews, 20, 24-34.
73. United Nations. (2013). World Population Prospects: The 2012 Revision. Retrieved from https://esa.un.org/unpd/wpp/publications/Files/WPP2012_HIGHLIGHTS.pdf
74. von Haehling, S., Morley, J.E., & Anker, S.D. (2010). An overview of sarcopenia: facts and numbers on prevalence and clinical impact. Journal of cachexia, sarcopenia and muscle, 1(2), 129-133.
75. Wolf, S.L., Barnhart, H.X., Ellison, G.L., Coogler, C.E., & Group, A.F. (1997). The effect of Tai Chi Quan and computerized balance training on postural stability in older subjects. Physical therapy, 77(4), 371-381.
76. Wolfinger, R. (1993). Covariance structure selection in general mixed models. Communications in statistics-Simulation and computation, 22(4), 1079-1106.
77. Wright, R.L., Peters, D.M., Robinson, P.D., Watt, T.N., & Hollands, M.A. (2015). Older adults who have previously fallen due to a trip walk differently than those who have fallen due to a slip. Gait & posture, 41(1), 164-169.
78. Wu, Y., Wang, Y. Z., Xiao, F., & Gu, D. Y. (2014, August). Kinematic characteristics of gait in middle-aged adults during level walking. In Engineering in Medicine and Biology Society (EMBC), 2014 36th Annual International Conference of the IEEE, Chicago, IL, USA(pp. 6915-6918).
79. Yamada, M., Higuchi, T., Mori, S., Uemura, K., Nagai, K., Aoyama, T., & Ichihashi, N. (2012). Maladaptive turning and gaze behavior induces impaired stepping on multiple footfall targets during gait in older individuals who are at high risk of falling. Archives of gerontology and geriatrics, 54(2), e102-e108.
80. Yamada, M., Tanaka, H., Mori, S., Nagai, K., Uemura, K., Tanaka, B., Aoyama, T., & Ichihashi, N. (2011). Fallers choose an early transfer gaze strategy during obstacle avoidance in dual-task condition. Aging clinical and experimental research, 23(4), 316-319.
81. Young, W.R., & Hollands, M.A. (2010). Can telling older adults where to look reduce falls? Evidence for a causal link between inappropriate visual sampling and suboptimal stepping performance. Experimental Brain Research, 204(1), 103-113.
82. Young, W.R., Wing, A.M., & Hollands, M.A. (2011). Influences of state anxiety on gaze behavior and stepping accuracy in older adults during adaptive locomotion. Journals of Gerontology Series B: Psychological Sciences and Social Sciences, 67(1), 43-51.
83. Zheng, R., Yu, W., & Fan, J. (2007). Development of a new Chinese bra sizing system based on breast anthropometric measurements. International Journal of Industrial Ergonomics, 37(8), 697-705.