簡易檢索 / 詳目顯示

研究生: 周澄樺
論文名稱: RFID網路方法設計以醫療產業為例
A RFID network design methodology for decision problem in health care
指導教授: 葉維彰
口試委員: 侯建良
唐麗英
葉維彰
學位類別: 碩士
Master
系所名稱: 工學院 - 工業工程與工程管理學系
Department of Industrial Engineering and Engineering Management
論文出版年: 2011
畢業學年度: 99
語文別: 英文
論文頁數: 42
中文關鍵詞: MCLP柔性演算法網路設計K-meansSSOFuzzy-ARTRFID
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究的目的是希望提供一個方法幫助決策者找出建設RFID的最佳建置方案,在要求覆蓋率為100%的限制之下找出所需要的最少reader數及reader的位置,並評估不同的建置方案或者使用不同規格reader的結果,並選擇成本最低的方案。首先分析問題也就是控制的儀器路徑及樓層面積,在將樓層面積分割成大小一致的小正方形來計算reader的覆蓋率,這稱為DS(demand squares)在一般的MCLP (Maximal Covering Location Problem)。本研究使用柔性演算法來找出reader的位置,並結合fuzzy-ART和K-means來給定一個較優的起始解,及利用binary search來提升搜尋的速率降低運算的時間,在本篇論文中使用的柔性演算法是Simplified Swarm Optimization (SSO),利用此方法的隨機性更快的找到較佳的解。


    The purpose of this research provide decision makers with methodology to optimize the design of a strategy to construct Radio frequency identification (RFID). Under constrain of maximal coverage rate to find the minimum number of RFID reader. Compare the difference of strategies that use different type of reader, and find the cheapest strategy. This paper uses soft computing to find the location of readers and combine the fuzzy-ART and K-means to get better initial solutions, and uses binary search to reduce searching time. Simplified Swarm Optimization (SSO) is the meta-heuristic algorithm using in this case, it can finds solution quickly than tradition math methodology. In this proposed method is to divide the whole floor plan into small squares to compute their coverage rate. The floor can be considered as a grid that contains n squares, commonly called demand squares (DS) in a generic MCLP (Maximal Covering Location Problem).

    中文摘要 I Abstract II 誌謝 III Table of Contents IV List of Figures V List of Tables VI Chapter 1 Introduction 1 1.1 Research background 1 1.2 Motivation 1 1.3 Research objective 2 1.4 Research framework 3 Chapter 2 Literature review 4 2.1 Meta-heuristics algorithms 4 2.1.1 The development of meta-heuristics algorithms 4 2.1.2 Particle swarm optimization 5 2.1.3 Simplified swarm optimization 6 2.2 Clustering methods 7 2.2.1 ART 7 2.2.2 Fuzzy-ART 9 2.2.3 K-means 11 2.3 RFID 12 2.3.1 Introduction 12 2.3.2 Application of RFID in health-care 14 Chapter 3 Research method 18 3.1 The case with one type of reader 18 3.1.1 Research system 18 3.1.2 Research process 19 3.2 The case with different types of reader 21 3.2.1 Research system 21 3.2.2 Research process 23 Chapter 4 Experiment 26 4.1 The case with one type of reader 29 4.2 The case with different types of reader 32 Chapter 5 Conclusion 36 Reference 37

    [1] Wan, D., 1999. Magic medicine cabinet: a situated portal for consumer healthcare. In: Proceeding of the International Symposium on Handheld and Ubiquitous Computing. Karlsruhe, Germany, p. 352–5.
    [2] XiuliQu, Lakausha T. Simpson, Paul Stanfield. A model for quantifying the value of RFID-enabled equipment tracking in hospital. Advance Engineering Informatics 2010
    [3] Accenture Inc. Radio Frequency Identification white paper. 2001.USA
    [4] Accenture News Release.Accenture Helps From RFID Industry Group to Evaluate Technology’s Value in Pharmaceutical Industry.Washington,US.
    [5] L.J. Fogel, A.J. Owens, M.J. Walsh, Artificial Intelligence through Simulated Evolution, John Wiley, Chichester, UK, 1966.
    [6] J.H. Holland, Adaptation in Natural and Artificial Systems, University of Michigan Press, Ann Arbor, MI, 1975.
    [7] D.E. Goldberg, Genetic Algorithms in Search, Optimization and Machine Learning, Addison Wesley, Boston, MA, 1989.
    [8] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing, Science 220 (4598) (1983) 671_680.
    [9] D. Karaboga, An idea based on honeybee swarm for numerical optimization, Technical Report TR06, Erciyes University, Engineering Faculty, Computer Engineering Department, 2005.
    [10] B. Basturk, D. Karaboga, An artificial bee colony (abc) algorithm for numeric function optimization, in: IEEE Swarm Intelligence Symposium 2006, Indianapolis, Indiana, USA, May 2006.
    [11] R.C. Eberhart, J. Kennedy, A new optimizer using particle swarm theory, in: Proceedings of the Sixth International Symposium on Micro Machine and Human Science, IEEE Press, Piscataway, NJ, 1995, pp. 39–43.
    [12] J. Kennedy, R.C. Eberhart, Particle swarm optimization, in: Proceedings of the IEEE International Conference on Neural Networks IV, vol. 4, IEEE Press, Piscataway, NJ, 1995, pp. 1942–1948.
    [13] R.C. Eberhart, Y. Shi, Computational Intelligence: Concepts to Implementations, Morgan Kaufmann, 2003.
    [14] Z.W. Geem, J.H. Kim, G.V. Loganathan, A new heuristic optimization algorithm: harmony search, Simulation 76 (2) (2001) 60_68
    [15] R.Oftadeh, M.J. Mahjooh, M. Shariatpanahi, A novel meta-heuristic optimization algorithm inspired by group hunting of animals: Hunting search, Computers and Mathematics with Applications 60 (2010) 2087_2098
    [16] Banks, A., Vincent, J., Anyakoha, C., 2007. A review of particle swarm optimization. Part I: background and development. Natural Computing 6 (4), 467–484.
    [17] Poli, R., Kennedy, J., Blackwell, T., 2007. Particle swarm optimization. An overview. Swarm Intelligence 1, 33–57.
    [18] Yannis Marinakis, Magdalene Marinaki, Georgios Dounias, A hybrid particle swarm optimization algorithm for routing problem: Engineering Applications of Artificial Intelligence 23(2010) 463-472
    [19] W.C. Yeh, A Two-Stage Discrete Particle Swarm Optimization for the Problem of Multiple Multi-Level Redundancy Allocation in Series Systems, Expert Systems with Applications, 36 (2009) 9192-9200.
    [20] W.C. Yeh, W.W. Chang, and Y.Y. Chung, A new hybrid approach for mining breast cancer pattern using Discrete Particle Swarm Optimization and Statistical method, Expert Systems with Applications, 36 (2009) 8204-8211.
    [21] W.C. Yeh, Study on Quickest Path Networks with Dependent Components and Apply to RAP, in press.
    [22] Burwick T, Joublin F. Optimal algorithmic complexity of Fuzzy ART. Neural Processing Letters 1998; 7:37–41.
    [23] Carpenter GA, Milenova BL. ART neural networks for medical data analysis and fast distributed learning. Artificial Neural Networks in Medicine and Biology. G‥oteborg University: Sweden, 2000.
    [24] Dagher I. ART networks with geometrical distances. Journal of Discrete Algorithms 2006; 4(4):538–553.
    [25] Kondadadi R, Kozma R. A Modified Fuzzy ART for Soft Document Clustering. IEEE: Silver Spring, MD, 2002.0-7803-7278-6/02.
    [26] Suresh NC, Kaparthi S. Performance of Fuzzy ART neural network for group technology cell-formation. International Journal of Production Research 1994; 32:1693–1713.
    [27] Carpenter GA, Grossberg S, Rosen DB. Fuzzy ART: Fast sTable learning and categorization of analog patterns by an adaptive resonance system. Neural Networks 1991; 4:759–771.
    [28] Huang J, Georgiopoulos M, Heileman GL. Properties of Learning in Fuzzy ART. IEEE: Silver Spring, MD, 1994.0-7803-1901-X/94.
    [29] Munoz A. Compound key word generation from document databases using a hierarchical clustering ART model.Intelligent Data Analysis 1997; 1:24–48.
    [30] Blume M, Esener SC. An efficient mapping of Fuzzy ART onto a neural architecture. Neural Networks Letter 1997;10(3):409–411.
    [31] Georgiopoulos M, Dagher I, Heileman GL, Bebis G. Properties of learning of a Fuzzy ART variant. Neural Networks1999; 12:837–850.
    [32] Chung I, Lin C-J, Lin C-T. A GA-based fuzzy adaptive learning control network. Fuzzy Sets and Systems 2000;112:65–84.
    [33] Tomida S, Hanai T, Honda H, Kobayashi T. Gene expression analysis using Fuzzy ART. Genome Informatics 2001;12:245–246.
    [34] Kim M-H, Jang D-S, Yang Y-K. A robust-invariant pattern recognition model using Fuzzy ART. Pattern Recognition2001; 34:1685–1696.
    [35] Tomida S, Hanai T, Honda H, Kobayashi T. Analysis of expression profile using Fuzzy ART. Bioinformatics 2002;18(8):1073–1083.
    [36] Anagnostopoulos GC, Georgiopoulos M. Category regions as new geometrical concepts in Fuzzy ART and Fuzzy ARTMAP. Neural Networks 2002; 15:1205–1221.
    [37] Lubkin J, Cauwenberghs G. VLSI implementation of fuzzy adaptive resonance and LVQ. Analog Integrated Circuits and Signal Processing 2002; 30:149–157.
    [38] Park S, Suresh NC. Performance of Fuzzy ART neural network and hierarchical clustering for part-machine grouping based on operation sequences. International Journal of Production Research 2003; 41(14):3185–3216.
    [39] Gomez SA, Chesnevar CI. Integrating defeasible argumentation with Fuzzy ART neural networks for pattern classification. Journal of Computer Science and Technology 2004; 4(1):45–51.
    [40] Peker A, Kara Y. Parameter setting of the Fuzzy ART neural network to part-machine cell formation problem. International Journal of Production Research 2004; 42(6):1257–1278.
    [41] Cinque L, Foresti G, Lombardi L. A clustering fuzzy approach for image segmentation. Pattern Recognition 2004;37:1797–1807.
    [42] Lopes MLM, Minussi CR, Lotufo ADP. Electric load forecasting using a Fuzzy ART&ARTMAP neural network. Applied Soft Computing 2005; 5:235–244.
    [43] Lee SY, Fischer GW. Grouping parts based on geometrical shapes and manufacturing attributes using a neural network. Journal of Intelligent Manufacturing 1999; 10:199–209.
    [44] MacQueen, J. B. (1967)."Some Methods for classification and Analysis of Multivariate Observations". 1. Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability. University of California Press. pp. 281–297.
    [45] Steinhaus, H. (1956). "Sur la division des corps materiels en parties" (in French). Bull. Acad. Polon. Sci. 4 (12): 801–804.
    [46] Lloyd, S. P. (1957). "Least square quantization in PCM".Bell Telephone Laboratories Paper. Published in journal much later: Lloyd., S. P. (1982)
    [47] D. Murphy, Is RFID right for your organization?, Mater Manage. Health Care 15(2006) 28–33.
    [48] R. Neil, On a roll: RFID moves toward patient safety, Mater. Manage. Health
    Care 14 (2005) 20–23
    [49] S. Kumar, E. Swanson, T. Tran, RFID in the healthcare supply chain: usage and
    application, Int. J. Health Care Qual. Assur. 22 (2009) 67–81.
    [50] J. Britton, An investigation into the feasibility of locating portable medical
    devices using radio frequency identification devices and technology, J. Med.
    Eng. Technol. 31 (2007) 450–458
    [51] M. Dempsey, Weaving through the hopes and hype surrounding RFID, Biomed.
    Instrum. Technol. 39 (2005) 19–22.
    [52] S. Davis, Tagging along – FRID helps hospitals tack assets and people, Health
    Facil. Manage. 17 (2004) 20–24.
    [53] A.M. Wicks, J.K. Visich, S. Li, Radio frequency identification applications in
    hospital environments, Hosp. Top. 84 (2006) 3–8.
    [54] M. Glabman, Room for tracking – RFID technology finds the way, Mater.
    Manage. Health Care 13 (2004) 26–33.
    [55] B. Bacheldor, At Wayne Memorial, RFID pays for itself, RFID J., April 3, 2007.Available from: <www.rfidjournal.com/article/articleview/3199/>.
    [56] B. Bacheldor, Carolinas Medical Center expands its RFID deployment, RFID J.,
    January9,2008.Availablefrom: www.rfidjournal.com/article/articleview/3841/>.
    [57] R. van der Togt, E.J. van Lieshout, R. Hensbroek, E. Beinat, J.M. Binnekade, P.J.M.Bakker, Electromagnetic interference from radio frequency identification
    inducing potentially hazardous incidents in critical care medical equipment,
    J. Am. Med. Assoc. 299 (2008) 2884–2890.
    [58] B. Bacheldor, New RFID study finds no interference withmedical devices, RFID J.,July 11, 2008. Available from: <www.rfidjournal.com/article/articleview/4186/>.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE