簡易檢索 / 詳目顯示

研究生: 林雍勛
Yung-Shun Lin
論文名稱: X射線層析攝影合成法之PCB板缺陷檢測
Tomosynthesis System for PCB Defect Inspection
指導教授: 彭明輝
Ming-Hwei Perng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 動力機械工程學系
Department of Power Mechanical Engineering
論文出版年: 2008
畢業學年度: 96
語文別: 中文
論文頁數: 91
中文關鍵詞: X射線層析攝影合成法PCB缺陷檢測
外文關鍵詞: tomosynthesis, PCB, defect inspection
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 隨著半導體產業的進步,PCB板上的電子元件越做越小、元件堆疊密度越密集,一般的光學檢測面臨無法檢測的難題;另一方面,為了確保出貨產品的品質,目前廠商提出對整張PCB板進行線上檢測的要求。本研究根據X射線層析攝影合成原理的X射線系統,發展一套完整的缺陷檢測流程,對PCB板上每層電子元件進行線上檢測。
    本研究的檢測流程包含系統誤差校正、背景補償、缺陷檢測等三個步驟。誤差校正步驟利用影像處理的方式,解決系統誤差破壞投影影像之間對應關係的問題,改善切層影像的品質;背景補償可以算是對檢測用的投影影像進行前處理的步驟,其目的是降低切層影像所受到的嚴重殘影效應,使後續缺陷檢測方法能夠更強健;在切層影像有殘影效應的考量下,整合切層影像、穿透式X射線影像的資訊與相對比較的理念,針對貫穿孔錫少、球柵陣列錫橋、球柵陣列空洞等缺陷,發展缺陷檢測演算法。最後,透過實驗結果可以確實看出本研究方法的有效性與強健性,並且應用在實際的機台上。


    目錄 摘要 I 誌謝辭 II 目錄 III 圖目錄 V 表目錄 VII 第一章 簡介 1 1.1 問題背景與研究動機 1 1.2 文獻回顧 4 1.2-1 X射線重建技術 5 1.2-2 X射線於PCB板檢測技術 7 1.3 研究策略與論文架構 9 第二章 X射線層析攝影合成 10 2.1 X射線層析攝影合成 [1] 10 2.2-1 X射線層析法 10 2.2-2 X射線層析攝影合成 12 2.2 系統架構與X射線層析攝影合成公式推導 14 2.2-1機台架構 15 2.2-2 X射線層析攝影合成公式推導 18 第三章 系統誤差校正 24 3.1 系統誤差來源 24 3.2 誤差校正方法 28 3.2-1 Roh的誤差校正流程 28 3.2-2 本研究的誤差校正流程 30 第四章 背景補償 34 4.1 鐵殼的殘影效應 34 4.2 背景補償方法 37 第五章 PCB板元件檢測 45 5.1 電子元件介紹 45 5.2 缺陷檢測演算法 47 5.2-1 貫穿孔錫少檢測 47 5.2-2 球柵陣列錫橋檢測 50 5.2-3 球柵陣列空洞檢測 53 第六章 實驗結果與分析 57 6.1 X射線層析攝影合成之電腦模擬驗證 57 6.2 誤差校正實驗結果 62 6.3 背景補償實驗結果 68 6.3-1 背景擬合函數之選用 69 6.3-2 背景補償 74 6.4 缺陷檢測實驗結果 78 6.4-1 貫穿孔錫少實驗 78 6.4-2 球柵陣列錫橋實驗 81 6.4-3 球柵陣列空洞實驗 83 第七章 結論 87 7.1 本研究之貢獻 87 7.2 未來發展方向 88 參考文獻 89

    [1] J. T. Dobbins and D. J. Godfrey, “Digital X-ray tomosynthesis: current state of the art and clinical potential,” Physics in Medicine and Biology, vol. 48, pp. R65–R106, 2003.
    [2] K. R. Maravilla, R. C. Murry Jr, and S Horner, “Digital tomosynthesis: technique for electronic reconstructive tomography,” American Journal of Roentgenology, Vol 141, No. 3, 497-502, 1983.
    [3] K. R. Maravilla, R. C. Murry Jr, J. Diehl, R. Suss, L. Allen, K. Chang, J. Crawford and R. McCoy, “Digital tomosynthesis: technique modifications and clinical applications for neurovascular anatomy,” Radiology, Vol 152, No. 3, 719-724, 1984.
    [4] T. D. Kampp, “The backprojection method applied to classical tomography,” Medical Physics, Vol 13, No. 3, 329-333 , 1986.
    [5] J. Liu, D. Nishimura and A. Macovski, “Generalized tomosynthesis for focusing on an arbitrary surface,” IEEE Transactions on Medical Image, Vol. 8, No. 2, 168-172, 1989.
    [6] Z. Kolitsi, G. Panayiotakis, V. Anastassopoulos, A. Scodras, and N. Pallikarakis, “A multiple projection method for digital tomosynthesis,” Medical Physics, Vol. 19, No. 4, 1045-1050, 1992.
    [7] S. T. Kang and H. S. Cho, ”A projection method for. reconstructing X-ray images of arbitrary cross-section,” NDT&E International, Vol. 32, No. 1, 9–20, 1999.
    [8] P. Haaker, E. Klotz, R. Koppe, R. Linde and H. Moller, “A new digital tomosynthesis method with less artifacts for angiography,” Medical Physics, Vol. 12, No. 4, 431-436, 1985.
    [9] R. Patnaik and D. Thayer, “Clearvue-Tomosynthetic Recinstruction Techniques for X-Ray Inspection of Circuit Boards,” Teradyne, Inc. Confidential and Proprietary.
    [10] B. E. Claus and J. W. Eberhard, “A new method for 3D reconstruction in digital tomosynthesis,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4684, 814-824, 2002.
    [11] Z. Kolitsi, G. Panayiotakis, and N. Pallikarakis, “A method for selective removal of out-of-plane structures in digital tomosynthesis,” Medical Physics, Vol. 20, No. 1, 47-50, 1993.
    [12] D. J. Godfrey, R. J. Warpa and J. T. Dobbins, “Optimization of matrix inverse tomosynthesis,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4320, 696-704, 2001.
    [13] A. C. Kak and M. Slaney, “Principles of computerized tomographic imaging,” New York :IEEE Press, 1988.
    [14] H. Matsuo, A. Iwata, I. Horiba and N. Suzumura, “Three- dimensional image reconstruction by digital tomosynthesis using inverse filtering,” IEEE Transactions on Medical Imaging, Vol. 12, No. 2, 307 -313, 1993.
    [15] Y. J. Roh, H. S. Cho, H. C. Kim and J. H. Kim, “Three dimensional volume reconstruction of an object from X-ray images,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 4190, 181 -191, 2001.
    [16] B. L. Pierce, D. J. Shelt, H. G. Longboth , S. Baddipudi and P. Yan, “Automated inspection of through hole solder joints utilizing X-ray imaging,” AUTOTESTCON (Proceedings), 191-196, 1993.
    [17] C. Neubauer and R. Hanke, “Improving X-ray inspection of printed circuit boards by integration of neural network classifiers,” IEEE/CHMT European International Electronic Manufacturing Technology Symposium, 14-18, 1993.
    [18] T. Sliotoa, T. Maruyamaa, Y. Azumaa, S. Gotoa, M. Mondoub, N. Furukawac and S. Okada, “Shape measurement of BGA for analysis of defects by X-ray imaging,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 5253, 361-365, 2003.
    [19] S. M. Rooks, B. Benhabib and K. C. Smith, “Development of an inspection process for ball-grid-array technology using scanned-beam X-ray laminography,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, Vol. 18, No. 4, 851-861, 1995.
    [20] V. Sankaran, A. R. Kalukin and R. P. Kraft, “Improvements to X-ray laminography for automated inspection of solder joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part C: Manufacturing, Vol. 21, No. 2, 148-154, 1998.
    [21] Y. J. Roh, K. W. Ko, H. S. Cho, H. C. Kim, H. N. Joo and S. K. Kim, “Inspection of ball grid array (BGA) solder joints using X-ray cross -sectional images,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 3836, 168-178, 1999.
    [22] C. Neubauer, S. Schropfer and R. Hanke, “X-ray inspection of solder joints by planar computer tomography (PCT),” Proceedings of the IEEE/CPMT International Electronics Manufacturing Technology (IEMT) Symposium, Vol. 1, 60-64, 1994.
    [23] C. Neubauer, “Intelligent X-Ray Inspection for Quality Control of Solder Joints,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part C: Manufacturing, Vol. 20, No. 2, 111 -120, 1997.
    [24] P. A. Roder, “Learning algorithms for both real-time detection of solder shorts and for SPC measurement correction using cross-sectional x-ray images of PCBA solder joints,” Proceedings of SPIE - The International Society for Optical Engineering, Vol. 2183, 58-67, 1994.
    [25] Y. J. Roh, W. S. Park and H. S. Cho, “Correcting image distortion in the X-ray digital tomosynthesis system for PCB solder joint inspection,” Image and Vision Computing, Vol. 21, No. 12, 1063-1075, 2003.
    [26] A. R. Kalukin and V. Sankaran, “Three-dimensional visualization of multilayered assemblies using X-ray laminography,” IEEE Transactions on Components, Packaging, and Manufacturing Technology Part A, Vol. 20, No. 3, 361-366, 1997.
    [27] P. S. Liao, T. S. Chew, P. C. Chung, “A fast algorithm for multilevel thresholding,” Journal of Information Science and Engineering, Vol. 17, No. 5, 713-727, 2001.
    [28] R. M. Haralick and L. G. Shapiro, “Computer and robot vision,” Addison-Wesley, 1992
    [29] P. Dierckx, “Curve and surface fitting with splines,” Oxford, 1993
    [30] P. Lancaster, “Curve and surface fitting :an introduction,” Academic Press, 1986

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE