簡易檢索 / 詳目顯示

研究生: 吳歷杰
Wu, Li-Chieh
論文名稱: 電流燒結處理對粉末壓錠Bi-Sb-Te熱電材料的影響
Effect of Electric Current Sintering on Powder-Compacted Bi-Sb-Te Thermoelectric Compounds
指導教授: 廖建能
Liao, Chien-Neng
口試委員:
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2009
畢業學年度: 97
語文別: 英文
論文頁數: 69
中文關鍵詞: 熱電效應熱電性質電流燒結散射機制
外文關鍵詞: Thermoelectric effects, Thermoelectric properties, Electrical sintering, Scattering mechanism
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • Single-crystal Bi-Sb-Te based thermoelectric material with a nearly zT value of 1 is a promising candidate for either cooling application or electricity generation at room temperature region. Nevertheless, the brittle nature of single crystal Bi-Sb-Te is not suitable for device assembly. Mechanically improved polycrystalline Bi-Sb-Te compounds suffer a slight deterioration in thermoelectric properties. Recent researches make possible a higher zT value of 1 with nanocrystalline Bi-Sb-Te powders compacted by spark plasma sintering (SPS) process. Therefore, the importance of applied electric current cannot be neglected.
    In this study, Bi-Sb-Te compounds were prepared by a powder metallurgical method with electrical sintering (ES) process. An electric current of density ~100 A/cm2 was introduced through a cold-pressed Bi-Sb-Te bulk during sintering. The applied electric current was found to be effective in elimination of crystal defects, leading to a high Hall mobility but moderately low carrier concentration in the sintered specimen. Theoretical calculation and experimental results indicate the carrier concentration of electrically sintered cold-pressed Bi0.4Sb1.6Te3 sample is optimized and gives rise to a zT value of 0.78. The cold-pressed specimen deteriorates the zT value due to its low relative density (~90%), while the electrically sintered hot-pressed sample can reach a zT value of 0.91 by increasing relative density (~99%) of the compacted bulk.


    製備成單晶結構的Bi-Sb-Te 熱電材料具有在室溫下接近1的熱電優值(zT值),此種材料可以作為冷卻或者是發電的應用。然而此種單晶結構因為機械性質不佳,作為元件使用時,切削成特定尺寸容易沿著特定結晶方向破裂。利用粉末冶金製備多晶結構的Bi-Sb-Te熱電材料雖然有較差的zT值,卻可以提高其機械強度。最近的研究指出,利用放電等離子燒結技術(Spark Plasma Sintering, SPS)製備Bi-Sb-Te奈米粉末成塊材具有超越1的zT300K值。所以在SPS製程中,額外加入的電流必定在燒結過程中扮演某種程度的效應。
    本研究中利用粉末冷壓成的Bi-Sb-Te熱電塊材,再搭配電流燒結的方法。實驗過程中在冷壓試片中通入密度為100(A/cm2)的電流,實驗結果發現額外的電流有助於消除晶體內部的缺陷,使得燒結後Bi-Sb-Te試片中載子遷移率大幅度的上升而載子濃度小幅度的下降。經由理論以及實驗證實Bi0.4Sb1.6Te3冷壓試片經過電流燒結後有最佳的載子濃度,得到的zT300K值為0.78。而此zT值相較於文獻較低,是由於冷壓試片的相對密度較小(~90%)的關係,之後利用熱壓通電流處理的Bi-Sb-Te試片中,在相對密度接近理論密度(~99%)的試片得到的zT300K值為0.91。

    誌謝 I Abstract II 摘要 III Contents IV List of Figures VI List of Tables IX Chapter 1 Introduction & background 1 1.1 Thermoelectric effects 2 1.1.1 Seebeck effect 3 1.1.2 Peltier effect 4 1.1.3 Thomson effect 5 1.2 Thermodynamics and Conversion efficiency 5 1.3 Transport theory of thermoelectrics 7 Chapter 2 Literature review 14 2.1 Current high zT thermoelectric materials 14 2.2 Optimization of thermoelectric properties 15 2.2.1 Optimization of carrier concentration 15 2.2.2 Compound semiconductors 16 2.2.3 Minimizing thermal conductivity 16 2.3 Bi2Te3 based thermoelectric materials 19 2.3.1 Crystal structure of Bi2Te3 19 2.3.2 Defects in p-type Bi2Te3 20 2.3.3 Transport properties of Bi2Te3 21 2.3.4 Preparation of Bi2Te3 22 2.4 Motivation 24 Chapter 3 Experimental design 25 3.1 Experimental procedure 25 3.1.1 Bi-Sb-Te compound preparation 25 3.1.2 Powder preparation 25 3.1.3 Compacting and shaping 25 3.1.4 Electrical and thermal sintering 26 3.1.5 Microstructure & phase determination 28 3.1.6 Properties characterization 28 Chapter 4 Results and discussion 29 4.1 Compare electrical and thermal sintering 29 4.1.1. Microstructure and phase examination 30 4.1.2 Electronic properties 35 4.1.3 Interaction of electric current and point defects in sintering process 36 4.1.4 Determine the scattering mechanism 38 4.1.5 Non-parabolic E-k relation for small band gaps 39 4.1.6 Thermal properties 41 4.2 Optimize carrier concentration through theoretical calculation & experiment 43 4.2.1 Bi0.5Sb1.5Te3 specimen 44 4.2.2 Bi0.4Sb1.6Te3 specimen 46 4.3 High Seebeck coefficient of the electrically sintered Bi-Sb-Te with Ag paste 51 4.3.1 Tentative model 54 4.3.2 Re-examine the derivation of Seebeck coefficient 59 Chapter 5 Conclusions & future prospects 63 5.1 Conclusions 63 5.2 Future prospects 64 Chapter 6 Reference 65

    [1] Http://old.npf.org.tw/PUBLICATION/SD/091/SD-R-091-029.htm
    [2] D. M. Rowe, CRC handbook of thermoelectrics (1995) p19-25
    [3] G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (2001) Ch1-Ch3
    [4] G. J. Snyder and E. S. Toberer, Complex thermoelectric materials, Nature Materials 7 (2008), no. 2, 105-114.
    [5] H. J. Goldsmid and R. W. Douglas, The use of semiconductors in thermoelectric refrigeration, British Journal of Applied Physics 5 (1954), 386-390.
    [6] B. Poudel, Q. Hao, Y. Ma, Y. Lan, A. Minnich, B. Yu, X. Yan, D. Wang, A. Muto, D. Vashaee, X. Chen, J. Liu, M. S. Dresselhaus, G. Chen and Z. Ren, High-Thermoelectric Performance of Nanostructured Bismuth Antimony Telluride Bulk Alloys, Science 320 (2008), 634-638.
    [7] X. Tang, W. Xie, H. Li, W. Zhao, Q. Zhang and M. Niino, Preparation and thermoelectric transport properties of high-performance p-type Bi2Te3 with layered nanostructure, Applied Physics Letters 90 (2007), no. 1, 012102.
    [8] Y. Q. Cao, X. B. Zhao, T. J. Zhu, X. B. Zhang and J. P. Tu, Syntheses and thermoelectric properties of Bi2Te3/Sb2Te3 bulk nanocomposites with laminated nanostructure, Applied Physics Letters 92 (2008), no. 14, 143106.
    [9] W. M. Yim and F. D. Rosi, Compound tellurides and their alloys for Peltier cooling-A Review, Solid-State Electronics 15 (1972), 1121-1140.
    [10] B. R. Nag, Electron Transport in Compound Semiconductors (1980) p7
    [11] J. O. Sofo and G. D. Mahan, Optimum band gap of a thermoelectric material, Physical Review B 49 (1994), no. 7, 4565-4570.
    [12] M. J. Smith, R. J. Knight and C. W. Spencer, Properties of Bi2Te3-Sb2Te3 Alloys, Journal of Applied Physics 33 (1962), 2186-2190.
    [13] H. W. Jeon, H. P. Ha, D. B. Hyun and J. D. Shim, Electrical and thermoelectrical properties of undoped Bi2Te3-Sb2Te3 and Bi2Te3-Sb2Te3-Sb2Se3 single crystals, Journal of Physics and Chemistry of Solids 52 (1991), no. 4, 579-585.
    [14] F. D. Rosi, B. Abeles and R. V. Jensen, Materials for thermoelectric refrigeration, Journal of Physics and Chemistry of Solids 10 (1959), 191-200.
    [15] D. M. Rowe, CRC Handbook of Thermoelectrics (1995) p212
    [16] G. F. Wang and T. Cagin, Electronic structure of the thermoelectric materials Bi2Te3 and Sb2Te3 from first-principles calculations, Physical Review B 76 (2007), no. 7, 075201.
    [17] G. R. Miller and C.-Y. Li, Evidence for the existence of antistructure defects in bismuth telluride by density measurements, Journal of Physics and Chemistry of Solids 26 (1964), 173-177.
    [18] L. R. Testardi and J. R. Wiese, Density anomalies in the Bi2Te3-Sb2Te3 system, Transactions of the American Institute of Mining, Metallurgical, and Petroleum Engineers, Incorporated 221 (1961), 647.
    [19] J. Horak, K. Cermak and L. Koudelka, Energy formation of antisite defects in doped Sb2Te3 and Bi2Te3 crystals, Journal of Physics and Chemistry of Solids 47 (1986), no. 8, 805-809.
    [20] T. Caillat, M. Carle, P. Pierrat, H. Scherrer and S. Scherrer, Thermoelectric properties of (BixSb1-x)2Te3 single crystal solid solutions grown by the T.H.M. method, Journal of Physics and Chemistry of Solids 53 (1992), no. 8, 1121-1129.
    [21] J. Jiang, L. D. Chen, S. Q. Bai, Q. Yao and Q. Wang, Thermoelectric properties of p-type (Bi2Te3)(x)(Sb2Te3)(1-x) crystals prepared via zone melting, Journal of Crystal Growth 277 (2005), no. 1-4, 258-263.
    [22] L. D. Ivanova and Y. V. Granatkina, Properties of single crystals in the Sb2Te3-Bi2Te3 solid-solution system, Inorganic Materials 31 (1995), no. 6, 678-681.
    [23] O. Yamashita, S. Tomiyoshi and K. Makita, Bismuth telluride compounds with high thermoelectric figures of merit, Journal of Applied Physics 93 (2003), 368-374.
    [24] X. A. Fan, J. Y. Yang, R. G. Chen, H. S. Yun, W. Zhu, S. Q. Bao and X. K. Duan, Characterization and thermoelectric properties of p-type 25%Bi2Te3-75% Sb2Te3 prepared via mechanical alloying and plasma activated sintering, Journal of Physics D-Applied Physics 39 (2006), no. 4, 740-745.
    [25] W. Xie, X. Tang, Y. Yan, Q. Zhang and T. M. Tritt, Unique nanostructures and enhanced thermoelectric performance of melt-spun BiSbTe alloys, Applied Physics Letters 94 (2009), no. 10, 102111.
    [26] Y. Ma, Q. Hao, B. Poudel, Y. C. Lan, B. Yu, D. Z. Wang, G. Chen and Z. F. Ren, Enhanced thermoelectric figure-of-merit in p-type nanostructured bismuth antimony tellurium alloys made from elemental chunks, Nano Letters 8 (2008), no. 8, 2580-2584.
    [27] K. Kishimoto and T. Koyanagi, Preparation of sintered degenerate n-type PbTe with a small grain size and its thermoelectric properties, Journal of Applied Physics 92 (2002), no. 5, 2544-2549.
    [28] C.-N. Liao, K.-M. Liou and H.-S. Chu, Enhancement of thermoelectric properties of sputtered Bi-Sb-Te thin films by electric current stressing, Applied Physics Letters 93 (2008), 042103.
    [29] N. Keawprak, Z. M. Sun, H. Hashimoto and M. W. Barsoum, Effect of sintering temperature on the thermoelectric properties of pulse discharge sintered (Bi0.24Sb0.76)2Te3 alloy, Journal of Alloys and Compounds 397 (2005), 236-244.
    [30] L. R. Testardi and McConnel.Gk, Measurement of the Seebeck Coefficient with Small Temperature Differences, Review of Scientific Instruments 32 (1961), no. 9, 1067-1068.
    [31] A. A. Joraide, Thermoelectric properties of fine-grained sintered (Bi2Te3)25-(Sb2Te3)75 p-type solid solution, Journal of Materials Science 30 (1995), no. 3, 744-748.
    [32] R. Ionescu, J. Jaklovszky and N. Nistor, Grain size effects on thermoelectrical properties of sintered solid solutions based on Bi2Te3, Physica Status Solidi A-Applications and Materials Science 27 (1975), 27-34.
    [33] Z. Stary, J. Horak, M. Stordeur and M. Stolzer, Antisite defects in Sb2-xBixTe3 mixed crystals, Journal of Physics and Chemistry of Solids 49 (1988), no. 1, 29-34.
    [34] H. Noro, K. Sato and H. Kagechika, The thermoelectric properties and crystallography of Bi-Sb-Te-Se thin films grown by ion beam sputtering, Journal of Applied Physics 73 (1993), no. 3, 1252-1260.
    [35] M. Stordeur, M. Stölzer, H. Sobotta and V. Riede, Investigation of the Valence Band Structure of Thermoelectric (Bi1-xSbx)2Te3 Single Crystals, Physica Status Solidi B-Basic Research 150 (1988), 165-176.
    [36] J. P. Fleurial, L. Gailliard, R. Triboulet, H. Scherrer and S. Scherrer, Thermal-properties of high-quality single crystals of bismuth telluride - part 2 mixed-scattering model, Journal of Physics and Chemistry of Solids 49 (1988), no. 10, 1249-1257.
    [37] B. R. Nag, Electron Transport in Compound Semiconductors (1980) p221
    [38] X. A. Fan, J. Y. Yang, W. Zhu, S. Q. Bao, X. K. Duan and Q. Q. Zhang, Thermoelectric properties of p-type Te-doped (Bi,Sb)2Te3 alloys by mechanical alloying and plasma activated sintering, Journal of Alloys and Compounds 448 (2008), no. 1-2, 308.
    [39] G. S. Nolas, J. Sharp and H. J. Goldsmid, Thermoelectrics: Basic Principles and New Materials Developments (2001) p61
    [40] J. Yang, T. Aizawa, A. Yamamoto and T. Ohta, Thermoelectric properties of p-type (Bi2Te3)(x)(Sb2Te3)(1-x) prepared via bulk mechanical alloying and hot pressing, Journal of Alloys and Compounds 309 (2000), no. 1-2, 225-228.
    [41] K. Kishimoto, K. Yamamoto and T. Koyanagi, Influences of potential barrier scattering on the thermoelectric, properties of sintered n-type PbTe with a small grain size, Japanese Journal of Applied Physics 42 (2003), no. 2A, 501-508.
    [42] D. B. Hyun, T. S. Oh, J. S. Hwang and J. D. Shim, Effect of excess Te addition on the thermoelectric properties of the 20% Bi2Te3-80% Sb2Te3 single crystal and hot-pressed alloy, Scripta Materialia 44 (2001), no. 3, 455-460.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE