簡易檢索 / 詳目顯示

研究生: 呂宣霆
Lu, Shuan-Ting
論文名稱: ARIMA模型和人工神經元網路模型在時間序列資料預測的應用與比較
Comparisons on ARIMA Modeling and Artificial Neural Networks Applied to Time Series Prediction
指導教授: 徐南蓉
Hsu, Nan-Jung
口試委員: 蔡恆修
Tsai, Heng-Hsiu
張雅梅
Chang, Ya-Mei
學位類別: 碩士
Master
系所名稱: 理學院 - 統計學研究所
Institute of Statistics
論文出版年: 2018
畢業學年度: 106
語文別: 中文
論文頁數: 51
中文關鍵詞: 類神經網路時間序列移動差分整合模型
外文關鍵詞: Artificial neural network, Time series, SARIMA
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 人工神經元網路 (ANN) 模型廣泛應用於資料科學領域,特別是它具有良好預測非線性結構資料的能力。本文感興趣的第一個研究議題為: 針對各種不同時間序列資料結構下,使用統計領域的 Seasonal ARIMA (SARIMA) 模型與資訊工程領域的 ANN 模型,在一步及多步預測的效果優劣比較。第二個研究議題為是否能透過 ANN 模型的結構,擷取或辨識非線性結構資料的特徵 ? 本文提供一個探索結構特徵的方法。
    我們利用模擬數據與 實際資料進行 SARIMA 跟 ANN 的比較。在模擬試驗中,我們檢視不同程度之非線性隨機過程,在不同樣本數下的預測表現,希望探究ANN 模式在時序資料預測的應用成效。結果顯示當樣本數足夠多時,ANN對非線性 threshold AR 模式確實具有較佳的預測能力,同時也能透過觀察內部結構 (hidden layer) 學習資料特徵。本論文並綜合實例資料及模擬資料的分析結果以建議 SARIMA 及 ANN 模型適合使用時機。


    Artificial Neural Network (ANN) model has been widely applied in data science analysis, since it has good performance on predicting data with nonlinearity features. The first topic this thesis interested in is : What is the 1-step-ahead and multi-step-ahead forecast performance using Seasonal ARIMA (SARIMA) in the statistics literature and ANN in the information engineering literature. The second topic is : Is it available to extract or identify the nonlinearity feature from data via ANN fitting procedure? This thesis provides some exploration in this direction.
    We use simulation data and real data to compare SARIMA and ANN forecast performance. In simulation study, nonlinear random processes are generated with different degrees of nonlinearity with different sample size, and compare SARIMA and ANN forecast performance. We find that ANN model is effectiveness when it applied in time series forecasting. The result shows when sample size is large, ANN has better forecast performance. We can also learn feature of data through observing the ANN hidden layer structure. This thesis advises the appropriate scenarios of using SARIMA and ANN through the analysis results of simulation data and real data.

    1.緒論 p.1~p.2 2.古典時間序列模型 p.3~p.10 3.人工神經元網路模型 p.11~p.18 4.預測 p.19~p.23 5.資料分析 p.24~p.37 6.模擬實驗 p.38~p.42 7.總結與建議 p.43~p.44 8.參考文獻 p.45~p.46 9.附錄 p.47~p.51

    1.Anderson, B. and Moore, J. B. (1979). Optimal Filtering, Prentice-Hall, EnglewoodCli ffs, New Jersie, 1st edition.
    2.Box, G. and Jenkins, G. M. (1970). Time Series Analysis: Forecasting and Control,Holden-Day, San Francisco, 1st edition.
    3.Gurney, K. (1997). An introduction to neural networks, UCL Press, London, 1st edition.
    4.Hamzacebi, C. (2008). Improving arti ficial neural networks performance in seasonal time series forecasting, Information Sciences, 4550-4559.
    5.Hochreiter, S.(1997). Long Short-Term Memory, Neural Computation, 9,
    1735-1780.
    6.Hyndman, R. and Khandakar, Y. (2008). Automatic time series forecasting: The forecast package for R, Journal of Statistical Software, 26, ISSUE 3, 1-22.
    7.Kendall, M. and Stuart, A. (1983). The Advanced Theory of Statistics, Grin, 3,New York, 1st edition.
    8.Livera, A. and Hyndman, R. (2011). Forecasting Time Series With Complex Seasonal Patterns Using Exponential Smoothing, Journal of the American Statistical Association, 106, 1513-1527.
    9.Lapedes, A. and Farber, R. (1988). How Neural Networks Works, in Neural Information Processing Systems, American Institute of Physics, 442-456.
    10.Schuster, M. and Paliwal, K.K. (1997). Bidirectional recurrent neural networks,IEEE Transaction on signal processing, 2673-2681.
    11.Zhang, G.P. (1998). Forecasting with arti ficial neural networks : The state of the art, International Journal of Forecasting, 14, 35-62.
    12.Zhang, G.P. (2003). Time series forecasting using a hybrid ARIMA and neural network model, Neurocomputing, 50, 159-175.

    QR CODE