研究生: |
李亭瑩 |
---|---|
論文名稱: |
利用人類臍帶靜脈內皮細胞與臍帶血間葉幹細胞片建立可促進血管新生之心肌補綴片 Engineering a Pro-angiogenic Cardiac Patch Using Sheets of Human Umbilical Vein Endothelial Cells and Cord-blood Mesenchymal Stem Cells |
指導教授: | 宋信文 |
口試委員: |
張燕
許明照 鍾次文 林昆儒 宋信文 |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 生物醫學工程研究所 Institute of Biomedical Engineering |
論文出版年: | 2014 |
畢業學年度: | 102 |
語文別: | 中文 |
論文頁數: | 34 |
中文關鍵詞: | 組織工程 、細胞片 、心肌梗塞 、血管新生 |
相關次數: | 點閱:3 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
成人心肌組織缺乏再生能力,梗塞壞死的部位會被纖維組織所取代,嚴重影響心臟功能。本實驗室過去曾利用去細胞牛心包膜組織工程支架,結合多層間葉幹細胞片以做為心肌補綴片,並用來修補壞死的心肌組織。然而在植入體內後,由於短時間補綴片內部的血管新生程度不足,使得部分幹細胞會因為無法獲得充分的氧氣與養分而死亡,嚴重限制其治療效果。為了改善補綴片內的血管新生情形,本論文將含有人類臍帶靜脈內皮細胞(human umbilical vein endothelial cell, HUVEC)與臍帶血間葉幹細胞(cord-blood mesenchymal stem cell, cbMSC)的細胞片夾附至前述之多孔性去細胞牛心包膜支架內,以加快移植後補綴片內部的血管新生與組織再生。在體外實驗中,我們建立含有HUVEC/cbMSC細胞片後,藉由分析血管新生基因的表現量,找出最佳的HUVEC/cbMSC比例。免疫螢光染色結果顯示,細胞片可保存大量的細胞外間質,且部分cbMSC已開始表現平滑肌細胞(smooth muscle cell)或是周細胞(pericyte)的結構蛋白。將HUVEC/cbMSC細胞片夾附至多孔性去細胞牛心包膜支架內部以建立心肌補綴片後,可發現隨著體外培養時間的推進,培養基內的生長因子濃度有逐漸上升的趨勢。體內實驗部份,我們將上述之補綴片植入裸鼠背部的皮下組織,並以表面種有細胞之補綴片與不含細胞之補綴片做為控制組,於手術後第14天進行正子造影與取樣病理分析。實驗結果顯示,夾附至補綴片內部的細胞片可促進宿主細胞遷入支架內層,並刺激支架周邊與內部的血管新生。此外,我們亦發現部分人類細胞可被整合至宿主的血管中,直接參與血管的生成。以上實驗結果顯示,將HUVEC/cbMSC細胞片夾附至補綴片內部,可有效促進移植後補綴片內部的血管新生,改善支架內部細胞的存活情形。
[1] Laflamme MA, Murry CE. Heart regeneration. Nature 2011;473:326–335.
[2] Laflamme MA, Murry CE. Regenerating the heart. Nat Biotechnol 2005;23:845–856.
[3] Watch, Learn and Live: Interactive Cardiovascular Library. American Heart Association. Retrieved Dec 10, 2012, from http://watchlearnlive.heart.org/CVML_Player.php?moduleSelect=hrtatk.
[4] Reichle FA. Criteria for evaluation of new arterial prostheses by comparing vein with dacron femoropopliteal bypasses. Surg Gynecol Obstet 1978;146:714–20.
[5] Matsumoto H, Fuse K, Yamamoto M, Hasegawa T, Saigusa M, Uei I. Studies on the porous polytetrafluoroethylene as the vascular prosthesis. Jinko Zoki 1972;1:44-47.
[6] Araújo JD, Braile DM, Azenha Filho JO, Barros ET, Marconi A. The use of bovine pericardium as an arterial graft. A 5-year follow-up. J Cardiovasc Surg (Torino) 1987;28:434–9.
[7] Ozawa T, Mickle DA, Weisel RD, Koyama N, Wong H, Ozawa S, Li RK. Histologic changes of nonbiodegradable and biodegradable biomaterials used to repair right ventricular heart defects in rats. J Thorac Cardiovasc Surg 2002;124:1157–64.
[8] Dor V, Sabatier M, Di Donato M, Montiglio F, Toso A, Maioli M. Efficacy of endoventricular patch plasty in large postinfarction akinetic scar and severe left ventricular dysfunction: comparison with a series of large dyskinetic scars. J Thorac Cardiovasc Surg 1998;116:50–9.
[9] Langer R, Vacanti JP. Tissue engineering. Science. 1993;260:920–6.
[10] Vacanti JP, Vacanti CA. The challenge of tissue engineering. In: Lanza RP, Langer R, Chick, WL, editors. Principles of Tissue Engineering. Austin, TX: Academic Press, 1997, pp. 1–6.
[11] Tabata Y. Necessity of drug delivery systems to tissue engineering. In: Park KD, Kwon IC, Yui N, Jeong SY, Park K, editors. Biomaterials and drug delivery toward new mellenium. Korea: Han Rim Won Publishing Co., 2000, pp. 531–44.
[12] Rane AA, Christman KL. Biomaterials for the treatment of myocardial infarction a 5-year update. J Am Coll Cardiol 2011;58:2615–29.
[13] Hay ED. Cell Biology of Extracellular Matrix, 2nd ed. New York: Plenum Press, 1991, pp. 45–71.
[14] Chang Y, Tsai CC, Liang HC, Sung HW. In vivo evaluation of cellular and acellular bovine pericardia fixed with a naturally occurring crosslinking agent (genipin). Biomaterials 2002;23:2447–57.
[15] Chang Y, Chen S-C, Wei H-J, Wu T-J, Liang H-C, Lai P-H, Yang H-H, Sung H-W. Tissue regeneration observed in a porous acellular bovine pericardium used to repair a myocardial defect in the right ventricle of a rat model. J Thorac Cardiovasc Surg 2005;130:705–11.
[16] Wei H-J, Chen S-C, Chang Y, Hwang S-M, Lin W-W, Lai P-H, Chiang HK, Hsu L-F, Yang H-H, Sung H-W. Porous acellular bovine pericardia seeded with mesenchymal stem cells as a patch to repair a myocardial defect in a syngeneic rat model. Biomaterials 2006;27:5409–19.
[17] Chen CH, Wei HJ, Lin WW, Chiu I, Hwang SM, Wang CC, Lee WY, Chang Y, Sung HW. Porous tissue grafts sandwiched with multilayered mesenchymal stromal cell sheets induce tissue regeneration for cardiac repair. Cardiovasc Res 2008;80:88–95.
[18] Huang C-C, Liao C-K, Yang M-J, Chen C-H, Hwang S-M, Hung Y-W, Chang Y, Sung H-W. A Strategy for Fabrication of a Three-Dimensional Tissue Construct Containing Uniformly Distributed Embryoid Body-derived Cells as a Cardiac Patch. Biomaterials 2010;31:6218–27.
[19] Okano T, Yamada N, Okuhara M, Sakai H, Sakurai Y. Mechanism of cell detachment from temperature-modulated, hydrophilic-hydrophobic polymer surfaces. Biomaterials 1995;16:297–303.
[20] Wei H-J, Chen C-H, Lee W-Y, Chiu I, Hwang S-M, Lin W-W, Huang C-C, Yeh Y-C, Chang Y, Sung H-W. Bioengineered cardiac patch constructed from multilayered mesenchymal stem cells for myocardial repair. Biomaterials 2008;29:3547–56.
[21] Coleman and Ratcliffe. Angiogenesis: escape from hypoxia. Nat Med. 2009;15:491–3.
[22] Pugh and Ratcliffe. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat Med. 2003;9:677–84.
[23] Koike N, Fukumura D, Gralla O, Au P, Schechner JS, Jain RK. Tissue engineering: creation of long-lasting blood vessels. Nature. 2004;428:138–9.
[24] Nör JE, Peters MC, Christensen JB, Sutorik MM, Linn S, Khan MK, Addison CL, Mooney DJ, Polverini PJ. Engineering and characterization of functional human microvessels in immunodeficient mice. Lab Invest. 2001;81:453–63.
[25] Schechner JS, Nath AK, Zheng L, Kluger MS, Hughes CC, Sierra-Honigmann MR, Lorber MI, Tellides G, Kashgarian M, Bothwell AL, Pober JS. In vivo formation of complex microvessels lined by human endothelial cells in an immunodeficient mouse. Proc Natl Acad Sci U S A. 2000;97:9191–6.
[26] Au P, Tam J, Fukumura D, Jain RK. Bone marrow-derived mesenchymal stem cells facilitate engineering of long-lasting functional vasculature. Blood. 2008;111: 4551–8.
[27] Jain RK. Molecular regulation of vessel maturation. Nat Med. 2003;9:685–93.
[28] Carmeliet P. Angiogenesis in health and disease. Nat Med. 2003;9:653–60.
[29] Hirschi KK, Rohovsky SA, D'A more PA. PDGF, TGF-beta, and heterotypic cell-cell interactions mediate endothelial cell-induced recruitment of 10T1/2 cells and their differentiation to a smooth muscle fate. J Cell Biol. 1998;141:805–14.
[30] Annabi B, Lee YT, Turcotte S, Naud E, Desrosiers RR, Champagne M, Eliopoulos N, Galipeau J, Béliveau R. Hypoxia promotes murine bone-marrow-derived stromal cell migration and tube formation. Stem Cells. 2003;21:337–47.
[31] Melero-Martin JM, De Obaldia ME, Kang SY, Khan ZA, Yuan L, Oettgen P, Bischoff J. Engineering robust and functional vascular networks in vivo with human adult and cord blood-derived progenitor cells. Circ Res. 2008;103:194–202.
[32] Brooks PC, Clark RA, Cheresh DA. Requirment of vascular integrin alpha v beta 3 for angiogenesis. Science. 1994; 264:569-571.