研究生: |
林義峰 Yi-Feng Lin |
---|---|
論文名稱: |
一維金屬硫化物奈米線:製備、檢測與應用 One-Dimensional Metal Sulfide Nanowires: Synthesis, Characterization and Applications |
指導教授: |
呂世源
王中林 |
口試委員: | |
學位類別: |
博士 Doctor |
系所名稱: |
工學院 - 化學工程學系 Department of Chemical Engineering |
論文出版年: | 2008 |
畢業學年度: | 96 |
語文別: | 英文 |
論文頁數: | 146 |
中文關鍵詞: | 奈米線 、硫化鎘 |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
本研究以氣相沉積系統來製備金屬硫化物材料之多種奈米結構,其中包含硫化鎘奈米粒子、奈米線陣列、三元Cd1-xZnxS奈米線陣列、同軸核殼硫化鎘/氧化鎘及硫化鋅/氧化鋅奈米棒陣列等。同時研究與探討這些材料於奈米尺度、特殊結構與複合組成下所展現之相關性質。藉由適當控制反應溫度,導入單源先驅物(single-source precursors)於有機金屬氣相沉積系統(metal organic chemical vapor deposition, MOCVD)中並在無觸媒的情況下,成功地製備出具有不同表觀比(aspect ratio)之硫化鎘奈米線陣列,較大表觀比之硫化鎘奈米線陣列具有較佳的場發射效應。藉由同時導入兩種具反應性差異單源先驅物於有機金屬氣相沉積系統中並控制其反應溫度,成功地製備出不同組成之三元Cd1-xZnxS奈米線陣列,並探討不同組成對其場發射效應之影響。結果顯示,相對於三元Cd1-xZnxS奈米線陣列,二元硫化鎘奈米線陣列由於其具有較好的導電性,因此其具有較佳的場發射效應。除了應用於場發射以外,硫化鎘奈米線陣列亦將其應用於生物胺基酸分子檢測方面,硫化鎘奈米線和酪氨酸(tyrosine)與絲氨酸(serine)在pH 11的情況下產生反應,使得硫化鎘奈米線表現出不同的螢光特性,而可將酪氨酸與絲氨酸予以分辨。此外,本研究亦結合硫化鎘的半導體與壓電特性,第一次將硫化鎘奈米線應用於奈米壓電發電機(piezoelectric nanogenerators)上,藉由原子力顯微鏡之針尖使硫化鎘奈米線彎曲而變形,將其機械能成功的轉換成電能。再者,結合硫化鎘的半導體、壓電與光電特性,探討白光激發對硫化鎘奈米線壓電發電機電壓輸出之影響。此結果顯示,所製備之硫化鎘奈米線於光壓電元件上具有相當大的潛力。另一方面,藉由選擇適當單一單源先驅物,於有機金屬氣相沉積系統中並在無觸媒的情況下,成功地於單一步驟與單一單源先驅物下製備出同軸核殼硫化鎘/氧化鎘及硫化鋅/氧化鋅奈米棒陣列。
Chapter 1
[1] V. Balzani, A. Credi, M. Venturi, Chem. Eur. J. 2002, 8, 5524.
[2] R. P. Feynman, Eng. Sci. 1960, 23, 22.
[3] K. E. Drexler, Engines of Creation, The Coming Era of Nanotechnology, Anchor Press, New York, 1986.
[4] K. E. Drexler, Sci. Am. 2001, 285, 66.
[5] Y. Hunag, X. Duan, Y, Cui, C. M. Lieber, Nano Lett. 2002, 2, 101.
[6] F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C. M. Lieber, Nano Lett. 2005, 5, 2287.
[7] M. Law, L. E.Greene, J. C. Johnson, R. Saykally, P. Yang, Nature Mater. 2005, 4, 455.
Chapter 2
[1] X. Duan, Y. Huang, Y. Cui, J. Wang, C. M. Lieber, Nature 2001, 409, 66.
[2] Z. W. Pan, Z. R. Dai, Z. L. Wang, Science 2001, 291, 1947.
[3] K.-W. Chang, J.-J. Wu, Adv. Mater. 2004, 16, 545.
[4] X. Duan, C. M. Lieber, Adv. Mater. 2000, 12, 298.
[5] K. Tang, Y. Qian, J. Zeng, X. Yang, Adv. Mater. 2003, 15, 448.
[6] D. Xu, X. Shi, G. Guo, L. Gui, Y. Tang, J. Phys. Chem. B 2000, 104, 5061.
[7] G. W. Sears, Acta Metall. 1955, 3, 361.
[8] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
[9] Y. Zhang, N. Wang, S. Gao, R. He, S. Miao, J, Liu, J. Zhu, X. Zhang, Chem. Mater. 2002, 14, 3564.
[10] R.-Q. Zhang, Y. Lifshitz, S.-T. Lee, Adv. Mater. 2003, 15, 635.
[11] N. Wang, Y. H. Tang, Y. F. Zhang, C. S. Lee, I. Bello, S. T. Lee, Chem. Phys. Lett. 1999, 299, 237
[12] R. S. Wang, W. C. Ellis, Appl. Phys. Lett. 1964, 4, 89.
[13] Y. Wu, P. Yang, J. Am. Chem. Soc. 2001, 123, 3165.
[14] X. Duan, J. Wang, C. M. Lieber, Appl. Phys. Lett. 2000, 76, 1116.
[15] T. Hanrath, B. A. Korgel, Adv. Mater. 2003, 15, 437.
[16] S. Xiong, J. Shen, Q. Xie, Y. Gao, Q. Tang, Y. Qian, Adv. Func. Mater. 2005, 15, 1787.
[17] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature, 2002, 420, 57.
[18] Y.-J. Hsu, S.-Y. Lu, Y.-F. Lin, Adv. Func. Mater. 2005, 15, 1350.
[19] Y. Wu, R. Fan, P. Yang, Nano Lett. 2002, 2, 83.
[20] F. Liu, J. Y. Lee, W. J. Zhou, Small 2006, 2, 121.
[21] A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, Z. L. Wang, J. Am. Chem. Soc. 2005, 127, 15692.
[22] Y.-L. Chueh, C.-H. Hsieh, M.-T. Chang, L.-J. Chou, C. S. Lao, J. H. Song, J.-Y. Gan, Z. L. Wang, Adv. Mater. 2007, 19, 143.
[23] M. Law, L. E.Greene, J. C. Johnson, R. Saykally, P. Yang, Nature Mater. 2005, 4, 455.
[24] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, D. P. Yu, Appl. Phys. Lett. 2005, 86, 203115.
[25] Z. Pan, H.-L. Lai, F. C. K. Au, X. Duan, W. Zhou, W. Shi, N. Wang, C. S. Lee, N. B. Wong, S. T. Lee, Adv. Mater. 2000, 12, 1186.
[26] Y. M. Zhao, Y. H. Li, I. Ahmad, D. G. McCartney, Y. Q. Zhu, W. B. Hu, Appl. Phys. Lett. 2006, 89, 133116.
[27] Y. Hunag, X. Duan, Y, Cui, C. M. Lieber, Nano Lett. 2002, 2, 101.
[28] F. Qian, S. Gradecak, Y. Li, C.-Y. Wen, C. M. Lieber, Nano Lett. 2005, 5, 2287.
[29] Y. Hunag, X. Duan, Y. Cui, L. J. Lauhon, K.-H. Kim, C. M. Lieber, Science 2001, 294, 1313.
[30] Y. Cui, Q. Wei, H. Park, C. M. Lieber, Science 2001, 293, 1289.
[31] F. Patolsky, G. Zheng, C. M. Lieber, Anal. Chem. 2006, 4261.
[32] F. Patolsky, G. Zheng, O. Hayden, M. Lakadamyali, X. Zhuang, C. M. Lieber, PNAS. 2004, 101, 14017.
[33] F. Patolsky, C. M. Lieber, Materialstoday 2005, 20.
[34] Z. L. Wang, J. Song, Science 2006, 312, 242.
[35] J. Song, J. Zhou, Z. L. Wang, Nano Lett. 2006, 6, 1656.
[36] X. Wang, J. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102.
[37] J. Ge, Y. Li, Adv. Func. Mater. 2004, 14, 157.
[38] T. Gao, T. Wang, J. Phys. Chem. B 2004, 108, 20045.
[39] X.-P. Shen, A.-H. Yuan, F. Wang, J.-M. Hong, Z. Xu, Solid State Comm. 2005, 133, 19.
[40] M. Chen, Y. Xie, J. Lu, Y. Xiong, S. Zhang, Y. Qian, X. Lu, J. Mater. Chem. 2002, 12, 748.
[41] W. Liu, C. Jia, C. Jin, L. Yao, W. Cai, X. Li, J. Crys. Growth 2004, 269, 304.
[42] B. Cao, Y. Jiang, C. Wang, W. Wang, L. Wang, M. Niu, W. Zhang, Y. Li, S. T. Lee, Adv. Func. Mater. 2007, 17, 1501.
[43] R.-M. Ma, L. Dai, G.-G. Qin, Nano Lett. 2007, 7, 868.
[44] R.-M. Ma, L. Dai, H.-B. Huo, W.-J. Xu, G.-G. Qin, Nano Lett. 2007, 7, 3300.
[45] A. Pan, D. Liu, R.Liu, F. Wang, X. Zhu, B. Zou, Small 2005, 1, 980.
[46] T. Gao, Q. H. Li, T. H. Wang, Appl. Phys. Lett. 2005, 86, 173105.
[47] Q. Tang, X. Chen, T. Li, A. Zhao, Y. Qian, D. Yu, W. Yu, Chem. Lett. 2004, 33, 1088.
Chapter 4
[1] (a) J. Hu, T. W. Odom, C. M. Lieber, Acc. Chem. Res. 1999, 32, 435. (b) Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
[2] C. Ye, G. Meng, Y. Wang, Z. Jiang, L. Zhang, J. Phys. Chem. B 2002, 106, 10338.
[3] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem. 1996, 100, 14037.
[4] (a) Y.-J. Hsu, S.-Y. Lu, Langmuir 2004, 20, 23. (b) Y.-J. Hsu, S.-Y. Lu, Appl. Phys. A, 2005, 81, 573. (c) C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, J. Am. Chem. Soc. 2003, 125, 11498.
[5] X.-P. Shen, A.-H. Yuan, F. Wang, J.-M. Hong, Z. Xu, Solid State Comm. 2005, 133, 19.
[6] (a) Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, D. P. Yu, Appl. Phys. Lett, 2005, 86, 203115. (b) C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett, 2002, 81, 3648.
[7] 350 mJ/m2 for quartz and 65 mJ/m2 for CdS.
[8] (a) B.P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, J. Phys. Chem. B 2004, 108, 10899. (b) I.V. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal Growth and Epitaxy; World Scientific, Singapore, 1996, 13.
[9] (a) D. F. Moore, Y. Ding, Z. L. Wang, J. Am. Chem. Soc. 2004, 126, 14372. (b) W. I. Park, D. H. Kim, S.-W. Jung, G.-C. Yi, Appl. Phys. Lett. 2002, 80, 1232. (c) J.-J. Wu, S.-C. Liu, J. Phys. Chem. B 2002, 106, 9546. (d) G.. Shen, C.-J. Lee, Crystal Growth and Design 2005, 5, 1085.
[10] Y.-J. Hsu, S.-Y. Lu, Langmuir 2004, 20, 194.
[11] Q. Tang, X. Chen, T. Li, A. Zhao, Y. Qian, D. Yu, W. Yu, Chem. Lett. 2004, 33, 1088.
[12] (a) C.-C. Chen, C.-C. Yeh, C.-H. Chen, M.-Y. Yu, H.-L. Liu, J.-J. Wu, K.-H. Chen, L.-C. Chen, J.-Y. Peng, Y.-F. Chen, J. Am. Chem. Soc. 2001, 123, 2791. (b) S. Q. Li, Y. X. Liang, T. H. Wang, Appl. Phys. Lett. 2005, 87, 143104.
[13] J.-J. Chiu, C.-C. Kei, T.-P. Perng, W.-S. Wang, Adv. Mater. 2003, 15, 1361.
[14] P. D. Mumford, M. Cahay, J. Appl. Phys. 1998, 84, 2754.
[15] C. H. Lin, S. H. Lee, C. M. Hsu, C. T. Kuo, Diamond and Related Mater. 2004, 13, 2147.
Chapter 5
[1] (a) Y.-J. Hsu, S.-Y. Lu, Y.-F. Lin, Adv. Func. Mater. 2005, 15, 1350. (b) Y.-J. Hsu, S.-Y. Lu, Chem. Comm. 2004, 2102. (c) Y.-F. Lin, Y.-J.; Hsu, S.-Y. Lu, W.-S. Chiang, Nanotech. 2006, 17, 4773. (d) Y.-L. Chueh, C.-H. Hsieh, M.-T. Chang, L.-J. Chou, C.-S. Lao, J. H. Song, J.-Y. Gan, Z.-L. Wang, Adv. Mater. 2007, 19, 143.
[2] (a) Y. Wu, R. Fan, P. Yang, Nano Lett. 2002, 2, 83. (b) M. S. Gudiksen, L. J. Lauhon, J. Wang, D. C. Smith, L C. M. ieber, Nature 2002, 415, 617.
[3] (a) A. Pan, H. Yang, R. Liu, R. Yu, B. Zou, Z. L. Wang, J. Am. Chem. Soc. 2005, 127, 15692. (b) Y. Liu, J. A. Zapien, Y. Y. Shan, C. Y. Geng, C. S. Lee, S. T. Lee, Adv. Mater. 2005, 17, 1372; (c) R. Venugopal, P.-I.; Lin, Y.-T. Chen, J. Phys. Chem. B 2006, 110, 11691.
[4] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
[5] (a) A. Wang, J. Dai, J. Cheng, M. P. Chudzik, T. J. Marks, R. P. H. Chang, C. R. Kannewurf, Appl. Phys. Lett. 1998, 73, 327. (b) D. L. Young, D. L. Williamson, T. J. Coutts, J. Appl. Phys. 2002, 91, 1464.
[6] (a) L. G. Suslina, E. I. Danasyuk, S. G. Konnikov, D. L. Federov, Sov. Phys. Semicond. 1976, 10, 1093. (b) B. A. Korgel, H. G. Monbouquette, Langmuir 2000, 16, 3588. (c) X. Zhong, M. Han, Z. Dong, T. J. White, W. Knoll, J. Am. Chem. Soc. 2003, 125, 8589. (d) Y. Liang, L. Zhai, X. Zhao, D. Xu, J. Phys. Chem. B 2005, 109, 7120.
[7] M. E. Rincon, M. W. Martinez, M. Miranda-Hernandez, Sol. Energy Mater. Sol. Cells 2003, 77, 25.
[8] (a) D. F. Moore, Y. Ding, Z. L. Wang, J. Am. Chem. Soc. 2004, 126 14372. (b) C.-C. Hu, K.-H. Chang, M.-C. Lin, Y.-T. Wu, Nano Lett. 2006, 6, 2690.
[9] (a) Z. L. Wang, J. Song, Science 2006, 312, 242. (b) M. Law, L. E. Greene, J. C. Johoson, R. Saykally, P. Yang, Nature Materials 2005, 4, 455.
[10] Y.-F. Lin, Y.-J. Hsu, S. Y. Lu, S.-C. Kung, Chem. Comm. 2006, 2391.
[11] (a) J. J. Wu, S. C. Liu, J. Phys. Chem. B 2002, 106, 9546. (b) W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Appl. Phys. Lett. 2002, 80, 4232.
[12] Q. Zhao, H. Z. Zhang, Y. W. Zhu, S. Q. Feng, X. C. Sun, J. Xu, D. P. Yu, Appl. Phys. Lett. 2005, 86, 203115.
[13] C. Y. Lee, T. Y. Tseng, S. Y. Li, P. Lin, Nanotech. 2005, 16, 1105.
[14] (a) D. Y. Zhong, G. Y. Zhang, S. Liu, T. Sakurai, T. Wang, E. G. Wang, Appl. Phys. Lett. 2002, 80, 506. (b) X. Y. Xue, L. M. Li, H. C. Yu, Y. J. Chen, Y. G. Wang, T. H. Wang, Appl. Phys. Lett. 2006, 89, 043118. (c) B. Xiang, Q. X. Wang, Z. Wang, X. Z. Zhang, L. Q. Liu, J. Xu, D. P. Yu, Appl. Phys. Lett. 2005, 86, 243103. (d) Y. J. Chen, Q. H. Li, Y. X. Liang, T. H. Wang, Q. Zhao, D. P. Yu, Appl. Phys. Lett. 2004, 85, 5682.
[15] (a) Y.-J. Hsu, S.-Y. Lu, Appl. Phys. A 2005, 81, 573. (b) Y.-J. Hsu, S.-Y. Lu, Langmuir 2004, 20, 23. (c) P. O’Brien, J. R. Walsh, I. M. Watson, M. Motevalli, L. Henriksen, J. Chem. Soc., Dalton Trans. 1996, 2491.
[16] F R. H. owler, L. W. Nordheim, Proc. R. Soc. London, Ser. A 1928, 119, 173.
[17] C. Tang, Y. Bando, Appl. Phys. Lett. 2003, 83, 659.
[18] R. K. Swank, Phys. Rev., 1967, 153, 844.; The work functions of CdS and ZnS were determined to be 5.01 and 5.4 eV, respectively in the reference. We estimated the work functions of Cd1-xZnxS nanowires collected at 300 and 400 oC to be 5.09 and 5.18 eV, respectively with linear interpolation.
[19] (a) C. J. Lee, T. J. Lee, S. C. Lyu, Y. Zhang, H. Ruh, H. J. Lee, Appl. Phys. Lett., 2002, 81, 3648. (b) J. Liu, X. Huang, Y. Li, X. Ji, Z. Li, X. He, F. Sun, J. Phys. Chem. C, 2007, 111, 4990. (c) X. Wang, J. Zhou, C. Lao, J. Song, N. Xu, Z. L. Wang, Adv. Mater., 2007, 19, 1627.
[20] N. Gaewdang, T. Gaewdang, Mater. Lett. 2005, 59, 3577.
[21] C. X. Xu, X. W. Sun, B. J. Chen, Appl. Phys. Lett. 2004, 84, 1540.
[22] (a) R. B. Peterson, C. L. Fields, B. A. Gregg, Langmuir 2004, 20, 5114. (b) Z. Wang, X. F. Qian, J. Yin, Z. K. Zhu, Langmuir 2004, 20, 3441. (c) B. Liu, H. C. Zeng, Langmuir 2004, 20, 4196; (d) Y. C. Zhu, Y. Bando, D. F. Xue, D. Golberg, Adv. Mater. 2004, 16, 831.
[23] There is a large lattice mismatch between cubic Si(100) substrate and hexagonal Cd1-xZnxS.
[24] (a) B.P. Zhang, N. T. Binh, K. Wakatsuki, Y. Segawa, Y. Yamada, N. Usami, M. Kawasaki, H. Koinuma, J. Phys. Chem. B, 2004, 108, 10899. (b) I.V. Markov, Crystal Growth for Beginners, Fundamentals of Nucleation, Crystal Growth and Epitaxy; World Scientific, Singapore, 1996, p.13.
[25] (a) J. H. He, C. S. Lao, L. J. Chen, D. Davidovic, Z. L. Wang, J. Am. Chem. Soc. 2006, 127, 16376. (b) K.-W. Chang, J.-J. Wu, Adv. Mater. 2005, 17, 241.
Chapter 6
[1] Jr. M. Bruchez, M. Moronne, P. Gin, S. Weiss, A.P. Alivisatos, Science 1998, 281, 2013.
[2] W.C.W. Chen, S. Nie, Science 1998, 281, 2016.
[3] (a) X. Ji, J. Zheng, J. Xu, V. K. Rastogi, T.-C. Cheng, J.J. DeFrank, R.M. Leblanc, J. Phys. Chem. - B 2005, 109, 3793. (b) C.A. Constantine, K.M. Gattas-Asfura, S.V. Mello, G. Crespo, V. Rastogi, T.-C. Cheng, J.J. DeFrank, R.M. Leblanc, J. Phys. Chem. – B 2003, 107, 13762. (c) C.A. Constantine, K.M. Gattas-Asfura, S.V. Mello, G. Crespo, V. Rastogi, T.-C. Cheng, J.J. DeFrank, R.M. Leblanc, Langmuir 2003, 19, 9863.
[4] J. Liang, S. Huang, D. Zeng, Z. He, X. Ji, X. Ai, H. Yang, Talanta 2006, 69, 126.
[5] E. Chang, J.S. Miller, J. Sun, W.W. Yu, V.L. Colvin, R. Drezek, J.L. West, Biochem. & Biophys. Res. Comm. 2005, 334, 1317.
[6] C.-P. Huang, Y.-K. Li, T.-M. Chen, Biosensors & Bioelectronics 2007, 22, 1835.
[7] A. Priyam, A. Chatterjee, S. K. Das, A. Saha, Chem. Comm. 2005, 4122.
[8] R. Agarwal, C. J. Barrelet, C. M. Lieber, Nano Lett. 2005, 5, 917.
[9] C. J. Barrelet, A. B. Greytak, C. M. Lieber, Nano Lett. 2004, 4, 1981.
[10] (a) Y.-F. Lin, Y.-J. Hsu, S.-Y. Lu, S.-C. Kung, Chem. Comm. 2006, 2391. (b) Q. T. Chen, T. Li, A. Zhao, Y. Qian, D. Yu, W. Yu, Chem. Lett. 2004, 33, 1088.
[11] (a) A. Chatterjee, A. Priyam, S. K. Das, A. Saha, J. Colloid Inter. Sci. 2006, 294, 334. (b) A. Datta, A. Saha, A. K. Sinha, S. N. Bhattacharyya, S. Chatterjee, J. Photochem. Photobio. B: Biology 2005, 78, 69.
[12] (a) S. K. Kulkarni, A. S. Ethiraj, S. Kharrazi, D. N. Deobagkar, D. D. Deobagkar, Biosenors and Bioelectronics 2005, 21, 95.(b) T. Torimoto, M. Yamashita, S. Kuwabata, T. Sakata, H. Mori, H. Yoneyama, J. Phys. Chem. - B 1999, 103, 8799.
[13] K. M. Gattas-Asfura, R. M. Leblanc, Chem. Comm. 2003, 2684.
[14] R. K. Murray, D. K. Granner, P. A. Mayes, V. W. Rodwell, Harper’s Biochemistry, Appleton and Lange, Stamford, 2000, p.29.
[15] G. L. Zubay, W. W. Parson, D. E. Vance, Principle of Biochemistry; Wm. C. Brown Publishers, Dubuque, lowa, Melbourne, Australia, Oxford, England, 1995, p. 54.
[16] (a) J. R. Lakowicz, Principles of Fluorescence Spectroscopy, Plenum Press, New York and London, 1983, Chap 9, p.257-266.; (b) W. J. Jin, J. M.Costa-Fernandez, R. Pereiro, A. Sanz-Medel, Anal. Chim. Acta, 2004, 522, 1.
[17] E. V. Albano, Heterog. Chem. Rev. 1996, 3, 389.
[18] (a) S.-Y. Lu, Y.-M. Yen, J. Chem. Phys. 2002, 116, 3128. (b) S.-Y. Lu, Y.-M. Yen, C.-Y. Tseng, H.-K. Tsao, J. Chem. Phys. 2002, 117, 3431. (c) S.-Y. Lu, J. Chem. Phys. 2004, 120, 3997.
Chapter 7
[1] A. R. Hutson, Phys. Rev. Lett. 1960, 4, 505.
[2] R. Agarwal, C. J. Barrelet, and C. M. Lieber, Nano Lett. 2005, 5, 917.
[3] T. Gao, Q. H. Li, and T. H. Wang, Appl. Phys. Lett. 2005, 86, 173105.
[4] R.-M. Ma, L. Dai, H.-B. Huo, W.-J. Xu, G.-G. Qin, Nano Lett. 2007, 7, 3300.
[5] Y.-F. Lin, Y.-J. Hsu, S.-Y. Lu, K.-T. Chen, and T.-Y. Tseng, J. Phys. Chem. C 2007, 111, 13418.
[6] Y. Kang, and D. Kim, Solar Energy Mater. & Solar Cells 2006, 90, 166.
[7] K. P. Mohanchandra, and J. Uchil, Thin Solid Film 1997, 305, 124.
[8] Z. L. Wang, and J. Song, Science 2006, 312, 242.
[9] X.D. Wang, J. Song, J. Liu, and Z. L. Wang, Science 2007, 316, 102.
[10] J. Song, J. Zhou, and Z. L. Wang, Nano Lett. 2006, 6, 1656.
[11] B. Cao, Y. Jiang, C. Wang, W. Wang, L. Wang, M. Niu, W. Zhang, Y. Li, and S.-T. Lee, Adv. Func. Mater. 2007, 17, 1501.
[12] M. Mitra, J. Drayton, M. L. C. Cooray, V. G. Karpov, and D. Shvydka, J. Appl. Phys. 2007, 102, 034505.
[13] R. K. Swank, Phys. Rev. 1967, 153, 844.
[14] Z.L. Wang, Adv. Mater. 2007, 19, 889.
Chapter 8
[1] M. Law, L. E. Greee, J. C. Johnson, R. Saykally, P. Yang, Nature Mater. 2005, 4, 455.
[2] J. Malzbender, R. W. Steinbrech, J. Power Source 2007, 173, 60.
[3] J. Yang, T. Caillat, MRS Bulletin 2006, 31, 224.
[4] Z. L. Wang, J. Song, Science 2006, 312, 242.
[5] X. Wang, J. Song, J. Liu, Z. L. Wang, Science 2007, 316, 102.
[6] J. Song, J. Zhou, Z. L. Wang, Nano Lett. 2006, 6, 1656.
[7] Z. L. Wang, Adv. Mater. 2007, 19, 889.
[8] X. Wang, J. Zhou, J. Song, J. Liu, N. Xu, Z. L. Wang, Nano Lett. 2006, 6, 2768.
[9] J. H. He, C. L. Hsin, J. Liu, L. J. Chen, Z. L. Wang, Adv. Mater. 2007, 19, 781.
[10] Y. F. Lin, J. Song, Y. Ding, Z. L. Wang, Appl. Phys. Lett. 2008, 92, 022105.
[11] A. R. Hutson, Phys. Rev. Lett. 1960, 4, 505.
[12] Q. H. Li, T. Gao, T. H. Wang, Appl. Phys. Lett. 2005, 86, 193109.
[13] Y. J. Hsu, S. Y. Lu, Y. F. Lin, Adv. Func. Mater. 2005, 15,1350.
[14] Y. J. Hsu, S. Y. Lu, Langmuir 2004, 20, 23.
[15] Y. F. Lin, Y. J. Hsu, S. Y. Lu, S. C. Kung, Chem. Comm. 2006, 2391.
[16] J. Zhang, F. Jiang, L. Zhang, J. Phys. Chem. B 2004, 108, 7002.
[17] X.-P. Shen, A.-H. Yuan, F. Wang, J.-M. Hong, Z. Xu, Solid Stat Comm. 2005, 133, 19.
[18] J. Ge, Y. Li, Adv. Func. Mater. 2004, 14, 157.
[19] M. Chen, Y. Xie, J. Lu, Y. Xiong, S. Zhang, Y. Qian, X. Liu, J. Chem. Mater. Chem. 2002, 12, 748.
[20] T. Gao, Q. H. Li, T. H. Wang, Appl. Phys. Lett. 2005, 86, 173105.
[21] R. Agarwal, C. J. Barrelet, C. M. Lieber, Nano Lett. 2005, 5, 917.
[22] B. Cao, Y. Jiang, C. Wang, W. Wang, L. Wang, M. Niu, W. Zhang, Y. Li, S. T. Lee, Adv. Func. Mater. 2007, 17, 1501.
[23] R. M. Ma, L. Dai, H. B. Huo, W. J. Xu, G. G. Qin, Nano Lett. 2007, 7, 3300.
[24] Y. F. Lin, Y. J. Hsu, S. Y. Lu, K. T. Chen, T. Y. Tseng, J.Phys. Chem. C 2007, 111, 13418.
[25] R. M. Ma, L. Dai, G. G. Qin, Nano Lett. 2007, 7, 868.
[26] R. M. Ma, L. Dai, G. G. Qin, Appl. Phys. Lett. 2007, 90, 093109.
[27] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayer, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
[28] R. K. Swank, Phys. Rev. 1967, 153, 844.
[29] P. C. Rusu, G. Brocks, J. Phys. Chem. B 2006, 110, 22628.
[30] J. Liu, P. Fei, J. Song, X. Wang, C. Lao, R. Tummala, Z. L. Wang, Nano Lett. 2008, 8, 328.
[31] J. Song, X. Wang, J. Liu, H. Liu, Y. Li, Z. L. Wang, Nano Lett. 2008, 8, 203.
Chapter 9
[1] Y. Xia, P. Yang, Y. Sun, Y. Wu, B. Mayers, B. Gates, Y. Yin, F. Kim, H. Yan, Adv. Mater. 2003, 15, 353.
[2] D. F. Moore, Y. Ding, Z. L. Wang, J. Am. Chem. Soc. 2004, 126, 14372.
[3] W. B. Choi, B. H. Cheong, J. J. Kim, J. Chu, E. Bae Adv. Func. Mater. 2003, 13, 80.
[4] S. Rahman, H. Yang, Nano Lett. 2003, 3 439.
[5] S. Z. Chu, K. Wada, S. Inoue, S. I. Todoroki, Chem. Mater. 2002 14 266.
[6] M. S. Sander, M. J. Cote, W. Gu, B. M. Kile, C. P. Tripp, Adv. Mater.2004, 16, 18.
[7] J. J. Wu, S. C. Liu, J. Phys. Chem. B 2002 106 9546.
[8] W. I. Park, D. H. Kim, S. W. Jung, G. C. Yi, Appl. Phys. Lett. 2002, 80, 4232.
[9] C. Ye, G. Meng, Y. Wang, Z. Jiang, L. Zhang, J. Phys. Chem. B 2002, 106, 10338.
[10] C. J. Barrelet, A. B. Greytak, C. M. Lieber, Nano Lett. 2004, 4, 1981.
[11] D. Routkevitch, T. Bigioni, M. Moskovits, J. M. Xu, J. Phys. Chem. B 1996, 100, 14037.
[12] (a) Y. J. Hsu, S. Y. Lu, Langmuir 2004, 20, 23. (b) Y. J. Hsu, S. Y. Lu, Appl. Phys. A 2005, 81, 573. (c) C. J. Barrelet, Y. Wu, D. C. Bell, C. M. Lieber, J. Am. Chem. Soc. 2003, 125, 11498.
[13] X. P. Shen, A. H. Yuan, F. Wang, J. M. Hong, Z. Xu, Solid State Comm. 2005, 133, 19.
[14] H. C. Ong, R. P. H. Chang, Appl. Phys. Lett. 2001, 79, 3612.
[15] T. Yamamoto, S. Kishimoto, S. Iida, Phys. B 2001, 308-310, 916.
[16] M. Bredol, J. Merikhi, J. Mater. Sci.1998, 33, 471.
[17] W. Chen, Z. Wang, Z. Lin, L. Lin, Appl. Phys. Lett. 1997, 70, 1465.
[18] J. Leeb, V. Gebhardt, G. Muller, D. Haarer, D. Su, M. Giersig, G. McMahon, L.Spanhel, J. Phys. Chem. B 1999, 103, 7839.
[19] Y. J. Hsu, S. Y. Lu, Langmuir 2004, 20, 194.
[20] J. A. Zapien, Y. Jiang, X. M. Meng, W. Chen, F. C. K. Au, Y. Lifshitz, S. T. Lee, Appl. Phys. Lett. 2004, 84, 1189.
[21] J. X. Ding, J. A. Zapien, W. W. Chen, Y. Lifshitz, S. T. Lee, Appl. Phys. Lett. 2004, 85, 2361.
[22] Q. Xiong, G. Chen, J. D. Acord, X. Liu, J. J. Zengel, H. R.Guiterrez, J. M. Redwing, L. C. L. Y. Voon, B. Lasen, P. C. Eklund, Nano Lett. 2004, 4, 1663.
[23] Y. Jiang, X. M. Meng, J. Liu, Z. Y. Xie, C. S. Lee, S. T. Lee, Adv. Mater. 2003, 15, 323.
[24] X. Jiang, Y. Xie, J. Lu, L. Zhu, Z. He, Y. Qian, Chem. Mater. 2001, 13, 1213.
[25] L. J. Lauhon, M. S. Gudiksen, D. Wang, C. M. Lieber, Nature 2002, 420, 57.
[26] S. Han, C. Li, Z. Liu, B. Lei, D. Zhang, W. Jin, X. Liu, T. Tang, C. Zhou, Nano Lett. 2004, 4, 1241.
[27] H. M. Lin, Y. L. Chen, J. Yang, Y. C. Liu, K. M. Yin, J. J. Kai, F. R. Chen, L. C. Chen, Y. F. Chen, C. C. Chen, Nano Lett. 2003, 3, 537.
[28] X. Y. Kong, Y. Ding, Z. L. Wang, J. Phys. Chem. B 2004, 108, 570.
[29] Q. Li, C. Wang, J. Am. Chem. Soc. 2003, 125, 9892.
[30] J. Hu, Y. Bando, Z. Liu, Adv. Mater. 2003, 15, 1000.
[31] X. M. Meng, J. Q. Hu, Y. Jiang, C. S. Lee, S. T. Lee, Appl. Phys. Lett. 2003, 83, 2241.
[32] Y. J. Hsu, S. Y. Lu, Chem. Comm. 2004, 18, 2102.
[33] Y. J.Hsu, S. Y. Lu, Y. F. Lin, Adv. Func. Mater. 2005, 15, 1350.
[34] (a) D. Barreca, E. Tondello, D. Lydon, T. R. Spalding, M. Fabrizio, Chem. Vapor
Deposition 2003, 9, 93. (b) P. S. Nair, T. Radhakrishnan, N. Revaprasadu, G. Kolawole, P. O’Brien, J. Mater. Chem. 2002, 12, 2722.
[35] R. A. Laudise, A. A. Ballman, J. Phys. Chem.1960, 64, 688.
[36] W. J. Li, E. W. Shi, W. Z. Zhong, Z. W. Yin, J. Crys. Growth 1999, 203, 186.
[37] (a) Y. J. Hsu, S. Y. Lu, J. Phys. Chem. B 2005, 109, 4398. (b) Y. J. Hsu, S. Y. Lu, Y. F. Lin, Small, 2005, 2, 8.
[38] R. B. Peterson, C. L. Fields, B. A. Gregg, Langmuir 2004, 20, 5114.
[39] Z. Wang, X. F. Qian, J. Yin, Z. K. Zhu, Langmuir 2004, 20, 3441.
[40] B. Liu, H. C. Zeng, Langmuir 2004, 20, 4196,
[41] Y. C. Zhu, Y. Bando, D. F. Xue, D. Golberg, Adv. Mater. 2004, 16, 831.
[42] W. Liu, C. Jia, C. Jin, L. Yao, W. Cai, X. Li, J. Crys. Growth 2004, 269, 304.
[43] Z. W. Pan, Z. R. Dai, L. Xu, S. T Lee., Z. L. Wang, J. Phys. Chem. B 2001, 105, 2507.
[44] A, Z. Jin, Y. G. Wang, Z. Zhang, J. Crys. Growth 2003. 252, 167.
[45] X. Liu, C. Li, S. Han, J. Han, C. Zhou, Appl. Phys. Lett.2003, 82, 1.
[46] Y. Wnag, G. Meng, L. Zhang, C. Liang, J. Zhang, Chem. Mater. 2002, 14, 1773.
[47] S. Y. Lu, I. H. Lin, J. Phys. Chem. B 2003, 107, 6974.
[48] E. Jang, S. Jun, Y. Chung, L. Pu, J. Phys. Chem. B 2004, 108, 4597.
[49] M. Tan, W. Cai, L. Zhang, Appl. Phys. Lett. 1997, 71, 3697.
[50] M. O’Neil, J. Marohn, G. McLendon, J. Phys. Chem. 1990, 94, 4356.
[51] J. Butty, N. Peyghambarian, Y. H. Kao, J. D. Mackenzie, Appl. Phys. Lett. 1996, 69, 3224.
[52] (a) Y. C. Zhu, Y. Bando, D. F. Xue, D. Golberg, Adv. Mater. 2004, 16, 831. (b) L. W. Yin, Y. Bando, J. H. Zhan, M. S. Li, D. Golberg, Adv. Mater. 2005, 17, 1972. (c) Y. Jiang, X. M. Ji, Z. Y. Xie, C. S. Lee, S. T. Lee, Adv. Mater. 2003, 15, 323. (d) J. Gong, S. Yang, J. Duan, R. Zhang, Y. Du, Chem. Comm. 2005, 351, 351.
[53] W. H. Zhang, J. L. Shi, H. R. Chen, Z. L. Hua, D. S. Yan, Chem. Mater. 2001, 13, 648.
[54] J. Joo, H. B. Na, T. Yu, J. H. Yu, Y. W. Kim, F. Wu, J. Z. Zhang, T. Hyeon, J. Am. Chem. Soc. 2003, 125, 11100.
[55] D. Denzler, M. Olschewski, K. Sattler, J. Appl. Phys.1998, 84, 2841.
[56] (a) J. Cheon, D. S. Talaga, J. I. Zink, J. Am. Chem. Soc. 1997, 119, 163. (b) M.
Chunggaze, M. A. Malik, P. O’Brien, J. Mater. Chem. 1999, 9, 2433.