簡易檢索 / 詳目顯示

研究生: 蔡忠志
Chung-Chih Tsai
論文名稱: 使用新特徵的人臉偵測系統
A New Feature Set for Face Detection
指導教授: 張智星
Jyh-Shing Roger Jang
口試委員:
學位類別: 碩士
Master
系所名稱: 電機資訊學院 - 資訊系統與應用研究所
Institute of Information Systems and Applications
論文出版年: 2005
畢業學年度: 93
語文別: 英文
論文頁數: 36
中文關鍵詞: 人臉偵測特徵
外文關鍵詞: Face detection, integral image, feature, AdaBoost, cascade structure
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 在快速人臉偵測的研究中,Viola和Jones提出了一個連接式的架構,此架構能得到高辨識率及低錯誤率;他們使用integral image來計算人臉特徵值。本研究提出了兩種新的integral image: triangle integral image以及各別對應的三角特徵。另外,本研究以Discrete AdaBoost為基礎,提出了一個能在訓練時降低非人臉錯誤率的方法。我們的實驗證明,三角特徵能使得需要的feature數減少;改進過後的AdaBoost能使得錯誤率更低。


    Viola and Jones introduce a fast face detection system which uses a cascaded structure that can achieve high detection rate and low false positive rate. Their system uses integral images to compute values from features. This thesis introduces two new types of integral images which are called triangle integral images and two corresponding features which are named triangle features. And this thesis proposes a method to lower training error by modifying Discrete AdaBoost. As results, to use triangle features can decrease the numbers of features; this research achieves lower false positive rate and fewer features are used.

    Abstract i Keywords i Acknowledgement iv 1 Introduction 1 1.1 System Overview 1 1.2 Thesis Organization 2 2 Related Work 3 3 Integral Images and Features 5 3.1 Integral Images 5 3.1.1 Rectangle Integral Image (RII) 5 3.1.2 Triangle Integral Images 6 3.2 Features 8 3.2.1 Extension of Rectangle Features 9 3.2.2 Triangle Features 10 4 Learning Strong Classifiers 13 4.1 Weak Classifier 13 4.2 Learn a Strong Classifier 14 4.2.1 Discrete AdaBoost (DA) 14 4.2.2 Discussion about DA 17 4.2.3 Modifications to DA 18 4.2.4 Discussion about Modifications 18 5 Cascade of Strong Classifiers 20 5.1 Learning Data 20 5.2 Learn a Cascaded Classifier 21 6 Experimental Results 23 6.1 Image processing 23 6.2 Scanning Images 27 6.3 Experimental Results 27 6.3.1 Dataset 28 6.3.2 Selection of Features 29 6.3.3 System Performance 32 6.3.4 Error Analyses 34 7 Conclusions and Future Work 36 References v Appendix A: Samples of Detection Results vi Appendix B: List of Feature Types Selected in Each Stage vii

    [1] Paul Viola, Michael Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, Dec. 2001.
    [2] Paul Viola, Michael Jones, “Robust Real Time Object Detection,” IEEE ICCV Workshop Statistical and Computational Theories of Vision, July 2001.
    [3] Rainer Lienhart, Alexander Kuranov, Vadim Pisarevesky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection,” MRL Technical Report, Intel Labs, May 2002.
    [4] Yoav Freund, Robert E. Schapire, “A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting,” Journal of Computer and System Sciences, 55(1):119-139, 1997.
    [5] Stan Z. Li, ZhenQiu Zhang, “FloatBoost Learning and Statistical Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 26, 1112-1123, Sep. 2004.
    [6] Yong Ma, Xiaoquing Ding, “Real-Time Rotation Invariant Face Detection Based on Cost-Sensitive AdaBoost,” Proc. IEEE Image Processing, Vol. 2, III- 921-4, Sep. 2003.
    [7] Dong Zhang, S.Z. Li, Daniel Gatica-Perez, “Real-Time Face Detection using Boosting in Hierarchical Feature Spaces, ” Proc. IEEE Pattern Recognition, Vol. 2, pp. 411-414, Aug. 2004.
    [8] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J., “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,” IEEE Trans. Pattern Anal. Mach. Intelligence, Vol. 23(6), pp. 643-660, 2001.
    [9] MIT face dataset, http://www.aivisoft.net/facelocalization/, retrieved 2005/6/13.
    [10] H. Rowley, S. Baluja, and T. Kanade, “Neural Network-based Face Detection,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 963-963, June 1998.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE