研究生: |
蔡忠志 Chung-Chih Tsai |
---|---|
論文名稱: |
使用新特徵的人臉偵測系統 A New Feature Set for Face Detection |
指導教授: |
張智星
Jyh-Shing Roger Jang |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
電機資訊學院 - 資訊系統與應用研究所 Institute of Information Systems and Applications |
論文出版年: | 2005 |
畢業學年度: | 93 |
語文別: | 英文 |
論文頁數: | 36 |
中文關鍵詞: | 人臉偵測 、特徵 |
外文關鍵詞: | Face detection, integral image, feature, AdaBoost, cascade structure |
相關次數: | 點閱:1 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
在快速人臉偵測的研究中,Viola和Jones提出了一個連接式的架構,此架構能得到高辨識率及低錯誤率;他們使用integral image來計算人臉特徵值。本研究提出了兩種新的integral image: triangle integral image以及各別對應的三角特徵。另外,本研究以Discrete AdaBoost為基礎,提出了一個能在訓練時降低非人臉錯誤率的方法。我們的實驗證明,三角特徵能使得需要的feature數減少;改進過後的AdaBoost能使得錯誤率更低。
Viola and Jones introduce a fast face detection system which uses a cascaded structure that can achieve high detection rate and low false positive rate. Their system uses integral images to compute values from features. This thesis introduces two new types of integral images which are called triangle integral images and two corresponding features which are named triangle features. And this thesis proposes a method to lower training error by modifying Discrete AdaBoost. As results, to use triangle features can decrease the numbers of features; this research achieves lower false positive rate and fewer features are used.
[1] Paul Viola, Michael Jones, “Rapid Object Detection using a Boosted Cascade of Simple Features,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, Dec. 2001.
[2] Paul Viola, Michael Jones, “Robust Real Time Object Detection,” IEEE ICCV Workshop Statistical and Computational Theories of Vision, July 2001.
[3] Rainer Lienhart, Alexander Kuranov, Vadim Pisarevesky, “Empirical Analysis of Detection Cascades of Boosted Classifiers for Rapid Object Detection,” MRL Technical Report, Intel Labs, May 2002.
[4] Yoav Freund, Robert E. Schapire, “A Decision-Theoretic Generalization of On-line Learning and an Application to Boosting,” Journal of Computer and System Sciences, 55(1):119-139, 1997.
[5] Stan Z. Li, ZhenQiu Zhang, “FloatBoost Learning and Statistical Face Detection,” IEEE Transactions on Pattern Analysis and Machine Intelligence Vol. 26, 1112-1123, Sep. 2004.
[6] Yong Ma, Xiaoquing Ding, “Real-Time Rotation Invariant Face Detection Based on Cost-Sensitive AdaBoost,” Proc. IEEE Image Processing, Vol. 2, III- 921-4, Sep. 2003.
[7] Dong Zhang, S.Z. Li, Daniel Gatica-Perez, “Real-Time Face Detection using Boosting in Hierarchical Feature Spaces, ” Proc. IEEE Pattern Recognition, Vol. 2, pp. 411-414, Aug. 2004.
[8] Georghiades, A.S. and Belhumeur, P.N. and Kriegman, D.J., “From Few to Many: Illumination Cone Models for Face Recognition under Variable Lighting and Pose,” IEEE Trans. Pattern Anal. Mach. Intelligence, Vol. 23(6), pp. 643-660, 2001.
[9] MIT face dataset, http://www.aivisoft.net/facelocalization/, retrieved 2005/6/13.
[10] H. Rowley, S. Baluja, and T. Kanade, “Neural Network-based Face Detection,” Proc. IEEE CS Conf. Computer Vision and Pattern Recognition, pp. 963-963, June 1998.