研究生: |
管政綱 |
---|---|
論文名稱: |
平板式熱管熱傳之實驗研究 Experimental Investigation of Heat Transfer of Flat Heat Pipe |
指導教授: |
許文震
W. J. Sheu |
口試委員: | |
學位類別: |
碩士 Master |
系所名稱: |
工學院 - 動力機械工程學系 Department of Power Mechanical Engineering |
論文出版年: | 2004 |
畢業學年度: | 92 |
語文別: | 中文 |
論文頁數: | 64 |
中文關鍵詞: | 平板式熱管 、毛細結構 、電子熱傳 、觀測 |
外文關鍵詞: | flat heat pipe, capillary, heat transfer of electrical device, observe |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
熱管用於電子熱傳相當廣泛,其概念是利用相變化時的潛熱,將熱大量的從熱管接觸熱源的一端(蒸發端)傳遞到散熱的另一端(冷凝端)。
發展平板式熱管(Flat Heat Pipe)應用在電子熱傳的優點,其一、大部分的熱管接為長條圓柱型,與平面的電子晶片接觸為一大問題,而平板則解決了此顧慮,其二、本實驗之平板式熱管內部為多流道設計,其用處在於可以增加內部液體容量、增加毛細力和使內部流體液氣分流,減少液氣相互之間的摩擦力。。在此所謂的平板式熱管並非一般市面上把許多條圓柱型熱管壓扁後接合相連,因此可以減少過多不必要的璧面相接和降低接觸熱阻,也大幅降低其重量與價格。
本實驗模擬大部分真實的電子散熱產品以水平放置為主,發熱源在平板式熱管之下,利用KAPTON電熱片模擬電子晶片的發熱,作為平板式熱管蒸發端的熱源,在冷凝端利用水冷的方式把熱量帶走,利用水冷的原因是為了增加平板式熱管兩端的溫差,使內部流體作動較為明顯,利於觀測。
本研究的主要目的有二。第一、了解毛細結構、內部流體種類(水、甲醇),內部流體填充量和內部材質(純銅、銅粉燒結的毛細結構)對於平板式熱管效能的影響為何,進一步找出散熱效果最理想的組合。第二、觀察流體在平板式熱管內部的運動情形,與在平板式熱管外部量測所得的溫度分佈相互比較,解釋其運動情形和溫度之間有何關聯性。
Heat pipe has been widely used for the thermal management of electronic products. The concept lies in the fact that the latent heat derived from phase change can absorb the heat generation of the chips. As a result, the massive quantity of heat can be quickly transported from the evaporation region to the condensation region.
Advantages of flat heat pipe for the heat transfer of electrical devices are as follows. (1) Most of heat pipes are of cylindrical shape, which inherently has a contact problem with flat electronic chips. However, there is no such a drawback for flat heat pipes. (2) The volume of working fluid inside the flat heat pipe and the thermal contact resistance across the interface between chips and heat pipes can increases and decreases, respectively. Thus, both of the total weight and price are greatly reduced. It should be noted that the flat heat pipe adopted here is not the product found in the common market which is composed of several cylindrical heat pipes arranged in parallel with one another.
This experiment is placed horizontally to simulate the most situations of electronic products. The chip is altered by a KAPTON electroncaloric sheet served as a heat source, and the water jacket as a heat sink in our experiment. The water cooling is used in the condensation region to achieve a greater temperature difference between the ends of flat heat pipes and thereby to facilitate the experimental observation.
There are two primary objectives in this work. (1) The first one is to investigate the influence of capillary force, properties of working fluid and wick structures on the cooling limit of chips. (2) The second one is to observe the whole phenomena of working fluid inside flat heat pipes from a startup to a steady state. We hope to find out a suitable combination of flat heat pipe whose cooling capacity is better through the visualization of experiment.
1. C. Belady, 2001, “Cooling and Power Consideration for Semiconductors into the Next Century,” proceedings of the international symposium on Low power electronics and design, Huntigton Beach, California, United States, pp. 100-105.
2. R. Viswanath, V. Wakharkar, A. Watwe, and V. Lebonheur, 2000, “Thermal Performance Challenges from Silicon to Systems,” Intel Technology Journal Q3, pp. 1-16.
3. P. Tadayon, 2000, “Thermal Challenges During Microprocessor Testing,” Intel Technology Journal Q3, pp. 1-8.
4. R. S. Gaugler, 1944, “Heat Transfer Devices,” Patent U.S. 2,350,348.
5. 依日光譯著, 1986, 「熱管技術理論實務」, 日本熱管技術協會編.
6. T. P. Cotter, 1984, “Principles and Prospects for Micro Heat Pipe,” Proc.5th Int. Heat Pipe Conf., Tsukuba, Japan, pp. 328-335.
7. B. R. Babin, G. P. Peterson, and D. Wu, 1990, “Steady-State Modeling and Testing of a Micro Heat Pipe,“ ASME Journal of Heat Transfer, Vol. 112, pp. 595-601.
8. G. P. Peterson, A. B. Duncan, and M. H. Weichold, 1993, “Experimental Investigation of Micro Heat Pipes Fabricated in Silicon Wafers,” Journal of Heat Transfer, Vol. 155, pp.751~754.
9. A. B. Duncan and G. P. Peterson, 1995, “Charge Optimization for a Triangular-Shaped Etched Micro Heat Pipe,” Journal of Thermophysics and Heat Transfer, Vol. 5, No.2, pp. 365-368.
10. A. K. Mallik, G. P. Peterson, and M. H. Weichold, 1995, “Fabrication of Vapor-Deposited Micro Heat Pipe Arrays as an Integral Part of Semiconductor Devices,” Journal of Microelectromechanical System, Vol. 4, No. 3, pp. 119-131.
11. B. Badran, F. M. Gerner, P. Ramadas, T. Henderson, and K. W. Baker, 1997, “Experimental Results For Low-Temperature Silicon Micromachined Micro Heat Pipe Arrays Using Water and Methanol as Working Fluids,” Journal of Experimental Heat Transfer, Vol. 10, pp. 253-272.
12. Y. Cao, M. C. Gao, J. E. Beam, and B. Donovan, 1996, “Experiments and Analyses of Flat Miniature Heat Pipes,” AIAA Journal of Thermophysics and Heat Transfer, Vol. 11, No. 2, pp. 158-164.
13. D. Wu and G. P. Peterson, 1991, “Investigation of the Transient Characteristics of a Micro Heat Pipe,” Journal of Thermophysics, Vol. 5, pp. 129–134.
14. D. Plesch, W. Bier, D. Seidel, and K. Schubert, 1991, “Miniature Heat Pipes for Heat Removal from Microelectronic Circuits,” Micromechanical Sensors, Actuators, and Systems : Proc. of the Winter Annual Meeting of The ASME, Atlanta, Ga., New York : ASME, DSC-Vol. 32, pp. 303-313.
15. Y. Cao, M. Cao, J. E. Beam, and B. Donovan, 1996, “Experiments and Analyses of Flat Miniature Heat Pipes,” Energy Conversion Engineering Conference, IEEE, Vol. 2, pp. 1402-1409.
16. T. Nyguyen , M. Mochizuki, K. Mashiko, Y. Saito, I. Sauciuc, and R. Boggs, 1998, “Advanced Cooling System Using Miniature Heat Pipes in Mobile PC,” InterSociety Conference on Thermal Phenomena, IEEE, pp. 507-511.
17. C. Sarno, J. B. Dezord, G. Moulin, M. C. Zaghdoudi, M. Lallemand, V. Sartte, M. Groll, M. Schneider, H. Holzer, T. Schmitt, J. Rantala, T. Aapro, and R. Lehtiniemi, 1999, “Use of Metal Matrix Composite Material Heat Pipes for The Thermal Management of High Integrated Electronic Packages,” Germany.
18. M. Schneider, M. Yoshida, and M. Groll, 1999, “Investigation of Interconnected Mini Heat Pipe Arrays for Micro Electronic Cooling,” 11th Int. Heat Pipe Conf., Tokyo, Japan.
19. M. Schneider, S. Khandekar, P. Schafer, R. Kulenovic, and M. Groll, 2000, “Phenomenological Investigations on Flat Plate Closed Loop Pulsating Heat Pipes,” Heat Transfer and Transport Phenomena in Microsystems, Banff Centre for Conferences, Banff, Alberta, Canada.
20. G. P. Peterson, 1994, An Introduction to Heat Pipes, John Wiley & Sons, Inc., New York.
21. D. Khrustalev and A. Faghri, 1996, “Fluid Flow Effects in Evaporation from Liquid-Vapor Meniscus,” ASME Journal of Heat Transfer, Vol. 118, pp. 731~739.
22. S. Kakac, R. K. Shah, and W. Aung, 1987, Handbook of Single-phase Convective Heat Transfer, U.S.A.
23. M. Y. Okiishi, 1994, Fundamentals of Fluid Mechanics, John Wiley & Sons, Inc., New York. U.S.A.
24. 陳明生, 1999, 「小型熱管製造、性能測試與熱輸送現象之研究」, 碩士論文, 台北科技大學機電整合研究所, 台北市.
25. 黃玉年,1999,「矽質微熱管之研製與測試」,碩士論文,淡江大學機械工程研究所,淡水鎮.
26. 王添銘, 2002, 「迴路式熱管之毛細結構的設計、製造及性能測試」, 碩士論文, 台灣大學機械工程研究所, 台北市.
27. 石育政, 2002, 「網格組織在熱管內之熱流特性」, 碩士論文, 長庚大學機械工程研究所, 林口鎮.