研究生: |
詹翰松 Chan, Han-Sung |
---|---|
論文名稱: |
Optical field waveforms synthesis and measurement 光波電場波形合成與量測 |
指導教授: |
孔慶昌
Kung, A. H. |
口試委員: |
趙如蘋
Pan, Ru-Pin 彭隆瀚 Peng, Lung-Han 楊尚達 Yang, Shang-Da 黃承彬 Huang, Chen-Bin 項維巍 Hsiang, Wei-Wei 林碩泰 Lin, Shou-Tai |
學位類別: |
博士 Doctor |
系所名稱: |
電機資訊學院 - 光電工程研究所 Institute of Photonics Technologies |
論文出版年: | 2012 |
畢業學年度: | 100 |
語文別: | 英文 |
論文頁數: | 84 |
中文關鍵詞: | 光學波形產生器 、光學波形合成 、脈衝形變 、載波波包相位 、光頻梳 、波形整形器輔助線性交互相干 |
外文關鍵詞: | optical function generator, optical waveform synthesis, pulse shaping, carrier-envelope phase, frequency comb, shaper-assisted linear cross correlation |
相關次數: | 點閱:2 下載:0 |
分享至: |
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報 |
如果能夠隨意地產生或量測光波中超快速振盪的電場波形(光波電子學),即代表著具有控制在埃(10的-18次方)秒時間尺度內電子微觀運動行為的能力,所以發展這種能力變成一個重要的新興科學研究與科技發展的目標。原子尺度下的電子運動行為是許多物理機制的基礎行為,若利用此合成埃秒時間尺度電場波形的能力,來觀測電子微觀動態過程及控制電子動態所造成的物理機制,將會帶來許多好處。光波電場合成器(或光學信號產生器)是一種光波頻域的信號產生器,將會成為一種新的基礎科學儀器,帶給需多領域重要的影響,因此科學上正慎重地發展此能夠合成具有任意埃秒電場形狀的單光週期脈衝的新技術。
在這篇論文中,我們描述我們如何在實驗上成功的合成任意不同形狀的飛秒至次飛秒週期性電場波形。為了產生可以控制載波波包相位的週期性光脈衝,我們利用一道基頻奈秒雷射脈衝產生其倍頻諧波脈衝,接著由分子調製技術,用此兩道脈衝驅動氫氣分子同調性振動,產生多重音階頻寬的光頻梳,此光頻梳合成的脈衝其電場波形的載波波包相位是可以完全控制的。我們利用倍頻與二倍頻干涉儀來量測外差信號,獲得光頻梳內各頻率間的相對相位值,由此證明各頻率間存在鎖相關係以及每發雷射脈衝間載波波包相位的穩定性。我們接著使用此頻率梳中前五個諧波,配合液晶空間光調制器合成電場振盪非弦波形式的光波電場。這些光脈衝中的電場波形的驗證,是利用調制器協助式線性相干法來量測,這是一種利用脈衝調制技術來輔助量測以顯示出電場波形的方法。
我們也發展了一套由非線性光子晶體及聲光調制器構成的光波電場合成器。這套光波電場合成器因為其所有主要的元件都是固態的光學元件,所以可以成為一個更佳方便的小體積光學系統。
因此,我們所發展的兩套光學信號產生器,可提供任意不同形狀的飛秒至次飛秒週期性電場波形,將是未來提供奈米電子、奈米材料、超快電子和化學反應控制等研究領域所需要的一種新科學研究儀器的雛形。
Ultrafast optical field waveform generation and measurement (lightwave electronics) affords a capability to attain microscopic control of electronic motion in the attosecond time scale, so it becomes an emerging science and technology of significant impact. The dynamics of electrons in atomic scale is of fundamental physical importance. Investigation of microscopic electronic processes and control of the physical processes enabled by electron dynamics will benefit substantially by having the ability to synthesize and shape electromagnetic field waveforms in the attosecond time scale. The optical field waveform synthesizer, or optical function generator which is a type of function generator in the optical regime, could become a basic and important scientific tool and would have broad impact in many research areas. It is therefore scientifically prudent to develop techniques to synthesize single cycle optical fields (waveforms) of arbitrary shape in the femtosecond to attosecond time frame.
In this dissertation, we describe how we have experimentally synthesized periodic electric field waveforms of various shapes in the femtosecond to subfemtosecond time scale. In order to synthesize periodic pulses whose carrier-envelope phase (CEP) is controllable, we took a nanosecond pulse at a fundamental frequency and generated its second harmonic. We then used the two pulses to drive the vibrational coherence of the hydrogen molecule and produced by molecular modulation a multi-octave spanning harmonic frequency comb that is fully carrier-envelope phase controllable. We employed f-2f interferometry to measure the heterodyne signals and determined the relative phase among the comb components (harmonics), which verified phase-locking among the harmonics and stabilization of the CEP among the pulses from shot-to-shot. We then used the first five harmonics of the comb to synthesize various non-sinusoidal optical field waveforms with the help of a liquid crystal spatial light modulator. These waveforms were verified using shaper-assisted linear cross-correlation, a technique based on pulse-shaping that allows visualization of these phase-stable waveforms.
We have also developed an optical field waveform synthesizer consisting of a nonlinear photonic crystal and an acousto-optical modulator. This system is more compact and convenient because all of the essential components are solid-state.
Hence we have developed two types of optical function generators which are the prototype of a new tool that will provide femtosecond to subfemtosecond periodic electric field waveforms of arbitrary shape for the research community in fields such as nanoelectronics, nanomaterial, ultrafast electronics, and chemical reaction control.
1. Ferenc Krausz and Misha Ivanov, "Attosecond physics," Reviews of Modern Physics. 81. 163-234 (2009).
2. E. Goulielmakis, M. Uiberacker, R. Kienberger, A. Baltuska, V. Yakovlev, A. Scrinzi, T. Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, "Direct measurement of light waves," Science. 305. 1267-9 (2004).
3. Z. Jiang, D. S. Seo, D. E. Leaird, and A. M. Weiner, "Spectral line-by-line pulse shaping," Optics Letters. 30. 1557-1559 (2005).
4. Z. Jiang, D. E. Leaird, and A. M. Weiner, "Line-by-line pulse shaping control for optical arbitrary waveform generation," Optics Express. 13. 10431-10439 (2005).
5. Zhi Jiang, Chen-Bin Huang, Daniel E. Leaird, and Andrew M. Weiner, "Optical arbitrary waveform processing of more than 100 spectral comb lines," Nat Photon. 1. 463-467 (2007).
6. R. L. Fork, B. I. Greene, and C. V. Shank, "Generation of optical pulses shorter than 0.1 psec by colliding pulse mode locking," Applied Physics Letters. 38. 671-672 (1981).
7. R. L. Fork, C. H. Brito Cruz, P. C. Becker, and C. V. Shank, "Compression of optical pulses to six femtoseconds by using cubic phase compensation," Optics Letters. 12. 483-485 (1987).
8. D. E. Spence, P. N. Kean, and W. Sibbett, "60-fsec pulse generation from a self-mode-locked Ti:sapphire laser," Optics Letters. 16. 42-44 (1991).
9. Daniel K. Negus, Luis Spinelli, Norman Goldblatt, and Gilles Feugnet. "Sub-100 Femtosecond Pulse Generation by Kerr Lens Mode-locking in Ti:Al2O3". 1991. Optical Society of America.
10. François Salin, Jeff Squier, and Michel Piché, "Mode locking of Ti:AI2O3 lasers and self-focusing: a Gaussian approximation," Optics Letters. 16. 1674-1676 (1991).
11. Michel Piché, "Beam reshaping and self-mode-locking in nonlinear laser resonators," Optics Communications. 86. 156-160 (1991).
12. Jianping Zhou, Greg Taft, Chung-Po Huang, Margaret M. Murnane, Henry C. Kapteyn, and Ivan P. Christov, "Pulse evolution in a broad-bandwidth Ti:sapphire laser," Optics Letters. 19. 1149-1151 (1994).
13. Andreas Stingl, Christian Spielmann, Ferenc Krausz, and Robert Szipöcs, "Generation of 11-fs pulses from a Ti:sapphire laser without the use of prisms," Optics Letters. 19. 204-206 (1994).
14. G. Steinmeyer, D. H. Sutter, L. Gallmann, N. Matuschek, and U. Keller, "Frontiers in Ultrashort Pulse Generation: Pushing the Limits in Linear and Nonlinear Optics," Science. 286. 1507-1512 (1999).
15. T. W. Hänsch, "A proposed sub-femtosecond pulse synthesizer using separate phase-locked laser oscillators," Optics Communications. 80. 71-75 (1990).
16. Gy Farkas and Cs Tóth, "Proposal for attosecond light pulse generation using laser induced multiple-harmonic conversion processes in rare gases," Physics Letters A. 168. 447-450 (1992).
17. S. E. Harris, J. J. Macklin, and T. W. Hänsch, "Atomic scale temporal structure inherent to high-order harmonic generation," Optics Communications. 100. 487-490 (1993).
18. P. B. Corkum, N. H. Burnett, and M. Y. Ivanov, "Subfemtosecond pulses," Optics Letters. 19. 1870-1872 (1994).
19. Kenneth J. Schafer and Kenneth C. Kulander, "High Harmonic Generation from Ultrafast Pump Lasers," Physical Review Letters. 78. 638 (1997).
20. Philippe Antoine, Anne L'Huillier, and Maciej Lewenstein, "Attosecond Pulse Trains Using High-Order Harmonics," Physical Review Letters. 77. 1234 (1996).
21. Shigetaka Yoshikawa and Totaro Imasaka, "A new approach for the generation of ultrashort optical pulses," Optics Communications. 96. 94-98 (1993).
22. H. Kawano, Y. Hirakawa, and T. Imasaka, "Generation of high-order rotational lines in hydrogen by four-wave Raman mixing in the femtosecond regime," Quantum Electronics, IEEE Journal of. 34. 260-268 (1998).
23. A. E. Kaplan, "Subfemtosecond Pulses in Mode-Locked 2 pi Solitons of the Cascade Stimulated Raman Scattering," Physical Review Letters. 73. 1243 (1994).
24. V. P. Kalosha and J. Herrmann, "Formation of Optical Subcycle Pulses and Full Maxwell-Bloch Solitary Waves by Coherent Propagation Effects," Physical Review Letters. 83. 544 (1999).
25. Zhiyi Wei, Yohei Kobayashi, Zhigang Zhang, and Kenji Torizuka, "Generation of two-color femtosecond pulses by self-synchronizing Ti:sapphire and Cr:forsterite lasers," Optics Letters. 26. 1806-1808 (2001).
26. Robert K. Shelton, Long-Sheng Ma, Henry C. Kapteyn, Margaret M. Murnane, John L. Hall, and Jun Ye, "Phase-Coherent Optical Pulse Synthesis from Separate Femtosecond Lasers," Science. 293 (2001).
27. Markus Drescher, Michael Hentschel, Reinhard Kienberger, Gabriel Tempea, Christian Spielmann, Georg A. Reider, Paul B. Corkum, and Ferenc Krausz, "X-ray Pulses Approaching the Attosecond Frontier," Science. 291. 1923-1927 (2001).
28. P. M. Paul, E. S. Toma, P. Breger, G. Mullot, F. Auge, Ph. Balcou, H. G. Muller, and P. Agostini, "Observation of a Train of Attosecond Pulses from High Harmonic Generation," Science. 292. 1689-1692 (2001).
29. M. Hentschel, R. Kienberger, Ch Spielmann, G. A. Reider, N. Milosevic, T. Brabec, P. Corkum, U. Heinzmann, M. Drescher, and F. Krausz, "Attosecond metrology," Nature. 414. 509-513 (2001).
30. A. V. Sokolov, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Raman Generation by Phased and Antiphased Molecular States," Physical Review Letters. 85. 562 (2000).
31. S. E. Harris and A. V. Sokolov, "Broadband spectral generation with refractive index control," Physical Review A. 55. R4019 (1997).
32. A. V. Sokolov, D. D. Yavuz, and S. E. Harris, "Subfemtosecond pulse generation by rotational molecular modulation," Optics Letters. 24. 557-559 (1999).
33. A. V. Sokolov, "Subfemtosecond compression of periodic laser pulses," Optics Letters. 24. 1248-1250 (1999).
34. A. V. Sokolov, D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, "Light modulation at molecular frequencies," Physical Review A. 63. 051801 (2001).
35. A. V. Sokolov and S. E. Harris, "Ultrashort pulse generation by molecular modulation," J. Opt. B: Quantum Semiclass. R1-R26 (2003).
36. L. Xu, Ch Spielmann, A. Poppe, T. Brabec, F. Krausz, and T. W. Hänsch, "Route to phase control of ultrashort light pulses," Optics Letters. 21. 2008-2010 (1996).
37. E. Cormier and P. Lambropoulos, "Effect of the initial phase of the field in ionization by ultrashort laser pulses," The European Physical Journal D - Atomic, Molecular, Optical and Plasma Physics. 2. 15-20 (1998).
38. G. G. Paulus, F. Grasbon, H. Walther, P. Villoresi, M. Nisoli, S. Stagira, E. Priori, and S. De Silvestri, "Absolute-phase phenomena in photoionization with few-cycle laser pulses," Nature. 414. 182-184 (2001).
39. G. G. Paulus, F. Lindner, H. Walther, A. Baltuška, E. Goulielmakis, M. Lezius, and F. Krausz, "Measurement of the Phase of Few-Cycle Laser Pulses," Physical Review Letters. 91. 253004 (2003).
40. A. Baltuska, Th Udem, M. Uiberacker, M. Hentschel, E. Goulielmakis, Ch Gohle, R. Holzwarth, V. S. Yakovlev, A. Scrinzi, T. W. Hänsch, and F. Krausz, "Attosecond control of electronic processes by intense light fields," Nature. 421. 611-615 (2003).
41. J. Reichert, R. Holzwarth, Th Udem, and T. W. Hänsch, "Measuring the frequency of light with mode-locked lasers," Optics Communications. 172. 59-68 (1999).
42. David J. Jones, Scott A. Diddams, Jinendra K. Ranka, Andrew Stentz, Robert S. Windeler, John L. Hall, and Steven T. Cundiff, "Carrier-Envelope Phase Control of Femtosecond Mode-Locked Lasers and Direct Optical Frequency Synthesis," Science. 288. 635-639 (2000).
43. Andrius Baltuška, Takao Fuji, and Takayoshi Kobayashi, "Controlling the Carrier-Envelope Phase of Ultrashort Light Pulses with Optical Parametric Amplifiers," Physical Review Letters. 88. 133901 (2002).
44. A. M. Weiner, "Femtosecond optical pulse shaping and processing," Progress in Quantum Electronics. 19. 161-237 (1995).
45. A. M. Weiner, "Femtosecond pulse shaping using spatial light modulators," Review of Scientific Instruments. 71. 1929-1960 (2000).
46. Andrew M. Weiner, "Ultrafast optical pulse shaping: A tutorial review," Optics Communications. 284. 3669-3692 (2011).
47. A. M. Weiner, J. P. Heritage, and E. M. Kirschner, "High-resolution femtosecond pulse shaping," J. Opt. Soc. Am. B. 5. 1563-1572 (1988).
48. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable femtosecond pulse shaping by use of a multielement liquid-crystal phase modulator," Optics Letters. 15. 326-328 (1990).
49. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, II, "Programmable shaping of femtosecond optical pulses by use of 128-element liquid crystal phase modulator," Quantum Electronics, IEEE Journal of. 28. 908-920 (1992).
50. Pierre Tournois, "Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems," Optics Communications. 140. 245-249 (1997).
51. F. Verluise, V. Laude, Z. Cheng, Ch Spielmann, and P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: pulse compression and shaping," Optics Letters. 25. 575-577 (2000).
52. M. Zhi, K. Wang, X. Hua, and A. V. Sokolov, "Pulse-shaper-assisted phase control of a coherent broadband spectrum of Raman sidebands," Optics Letters. 36. 4032-4034 (2011).
53. Miaochan Zhi, Kai Wang, Xia Hua, Benjamin D. Strycker, and Alexei V. Sokolov, "Shaper-assisted phase optimization of a broad holey spectrum," Optics Express. 19. 23400-23407 (2011).
54. M. Y. Shverdin, D. R. Walker, D. D. Yavuz, G. Y. Yin, and S. E. Harris, "Generation of a Single-Cycle Optical Pulse," Physical Review Letters. 94. 033904 (2005).
55. Wei-Jan Chen, Zhi-Ming Hsieh, Shu Wei Huang, Hao-Yu Su, Chien-Jen Lai, Tsung-Ta Tang, Chuan-Hsien Lin, Chao-Kuei Lee, Ru-Pin Pan, Ci-Ling Pan, and A. H. Kung, "Sub-Single-Cycle Optical Pulse Train with Constant Carrier Envelope Phase," Physical Review Letters. 100. 163906 (2008).
56. Miaochan Zhi and Alexei V. Sokolov, "Broadband coherent light generation in a Raman-active crystal driven by two-color femtosecond laser pulses," Optics Letters. 32. 2251-2253 (2007).
57. Jun Ye and John L. Hall, "Optical phase locking in the microradian domain: potential applications to NASA spaceborne optical measurements," Optics Letters. 24. 1838-1840 (1999).
58. Zhi-Ming Hsieh, Chien-Jen Lai, Han-Sung Chan, Sih-Ying Wu, Chao-Kuei Lee, Wei-Jan Chen, Ci-Ling Pan, Fu-Goul Yee, and A. H. Kung, "Controlling the Carrier-Envelope Phase of Raman-Generated Periodic Waveforms," Physical Review Letters. 102. 213902 (2009).
59. Shu Wei Huang, Wei-Jan Chen, and A. H. Kung, "Vibrational molecular modulation in hydrogen," Physical Review A. 74. 063825 (2006).
60. E. Goulielmakis, V. S. Yakovlev, A. L. Cavalieri, M. Uiberacker, V. Pervak, A. Apolonski, R. Kienberger, U. Kleineberg, and F. Krausz, "Attosecond control and measurement: lightwave electronics," Science. 317. 769-75 (2007).
61. G. Sansone, E. Benedetti, F. Calegari, C. Vozzi, L. Avaldi, R. Flammini, L. Poletto, P. Villoresi, C. Altucci, R. Velotta, S. Stagira, S. De Silvestri, and M. Nisoli, "Isolated single-cycle attosecond pulses," Science. 314. 443-6 (2006).
62. Dorine Keusters, Howe-Siang Tan, Patrick O'Shea, Erik Zeek, Rick Trebino, and Warren S. Warren, "Relative-phase ambiguities in measurements of ultrashort pulses with well-separated multiple frequency components," J. Opt. Soc. Am. B. 20. 2226-2237 (2003).
63. Wei-Hong Liang, Zhi-Ming Hsieh, Tsung-Ta Tang, A. H. Kung, Ci-Ling Pan, Ru-Pin Pan, and Peichen Yu. "Spatial Light Modulator for Pulse-Shaping of Single-Cycle Optical Pulses". 2009. Optical Society of America.
64. A. M. Weiner, in Ultrafast Optics (Wiley, New York, 2009), p. 92.
65. A. Galler and T. Feurer, "Pulse shaper assisted short laser pulse characterization," Applied Physics B: Lasers and Optics. 90. 427-430 (2008).
66. S. N. Goda, M. Y. Shverdin, D. R. Walker, and S. E. Harris, "Measurement of Fourier-synthesized optical waveforms," Optics Letters. 30. 1222-1224 (2005).
67. J. T. Green, J. J. Weber, and D. D. Yavuz, "Continuous-wave light modulation at molecular frequencies," Physical Review A. 82. 011805 (2010).
68. F. Couny, F. Benabid, P. J. Roberts, P. S. Light, and M. G. Raymer, "Generation and photonic guidance of multi-octave optical-frequency combs," Science. 318. 1118-21 (2007).
69. D. D. Yavuz, D. R. Walker, M. Y. Shverdin, G. Y. Yin, and S. E. Harris, "Quasiperiodic Raman Technique for Ultrashort Pulse Generation," Physical Review Letters. 91. 233602 (2003).
70. Stefan Rausch, Thomas Binhammer, Anne Harth, Franz X. Krtner, and Uwe Morgner, "Few-cycle femtosecond field synthesizer," Optics Express. 16. 17410-17419 (2008).
71. L. Matos, D. Kleppner, O. Kuzucu, T. R. Schibli, J. Kim, E. P. Ippen, and F. X. Kaertner, "Direct frequency comb generation from an octave-spanning, prismlessTi:sapphire laser," Optics Letters. 29. 1683-1685 (2004).
72. Steven T. Cundiff and Andrew M. Weiner, "Optical arbitrary waveform generation," Nat Photon. 4. 760-766 (2010).
73. A. Wirth, M. Th. Hassan, I. Grguraš, J. Gagnon, A. Moulet, T. T. Luu, S. Pabst, R. Santra, Z. A. Alahmed, A. M. Azzeer, V. S. Yakovlev, V. Pervak, F. Krausz, and E. Goulielmakis, "Synthesized Light Transcients," Science. 334. 195-200 (2011).
74. Shu-Wei Huang, Giovanni Cirmi, Jeffrey Moses, Kyung-Han Hong, Siddharth Bhardwaj, Jonathan R. Birge, Li-Jin Chen, Enbang Li, Benjamin J. Eggleton, Giulio Cerullo, and Franz X. Kartner, "High-energy pulse synthesis with sub-cycle waveform control for strong-field physics," Nat Photon. 5. 475-479 (2011).
75. Han-Sung Chan, Zhi-Ming Hsieh, Wei-Hong Liang, A. H. Kung, Chao-Kuei Lee, Chien-Jen Lai, Ru-Pin Pan, and Lung-Han Peng, "Synthesis and measurement of ultrafast waveforms from five discrete optical harmonics," Science. 331. 1165-8 (2011).
76. Wei-Chun Hsu, Ying-Yao Lai, Chien-Jen Lai, Lung-Han Peng, Ci-Ling Pan, and A. H. Kung, "Generation of multi-octave-spanning laser harmonics by cascaded quasi-phase matching in a monolithic ferroelectric crystal," Optics Letters. 34. 3496-3498 (2009).
77. J. A. Armstrong, N. Bloembergen, J. Ducuing, and P. S. Pershan, "Interactions between Light Waves in a Nonlinear Dielectric," Physical Review. 127. 1918-1939 (1962).
78. Hideki Ishizuki and Takunori Taira, "High-energy quasi-phase-matched optical parametric oscillation in a periodically poled MgO:LiNbO3 device with a 5?mm×5?mm aperture," Optics Letters. 30. 2918-2920 (2005).
79. L. E. Chipperfield, J. S. Robinson, J. W. G. Tisch, and J. P. Marangos, "Ideal Waveform to Generate the Maximum Possible Electron Recollision Energy for Any Given Oscillation Period," Physical Review Letters. 102. 063003 (2009).
80. Ivan P. Christov, Margaret M. Murnane, and Henry C. Kapteyn, "High-Harmonic Generation of Attosecond Pulses in the “Single-Cycle” Regime," Physical Review Letters. 78. 1251-1254 (1997).
81. R. Kienberger, E. Goulielmakis, M. Uiberacker, A. Baltuska, V. Yakovlev, F. Bammer, A. Scrinzi, Th Westerwalbesloh, U. Kleineberg, U. Heinzmann, M. Drescher, and F. Krausz, "Atomic transient recorder," Nature. 427. 817-821 (2004).
82. Carlo Altucci, Christian Delfin, Lena Roos, Mette B. Gaarde, Anne L’Huillier, Ian Mercer, Tomas Starczewski, and C. G. Wahlström, "Frequency-resolved time-gated high-order harmonics," Physical Review A. 58. 3934-3941 (1998).
83. O. Tcherbakoff, E. Mével, D. Descamps, J. Plumridge, and E. Constant, "Time-gated high-order harmonic generation," Physical Review A. 68. 043804 (2003).
84. Hiroki Mashiko, Steve Gilbertson, Chengquan Li, Sabih D. Khan, Mahendra M. Shakya, Eric Moon, and Zenghu Chang, "Double Optical Gating of High-Order Harmonic Generation with Carrier-Envelope Phase Stabilized Lasers," Physical Review Letters. 100. 103906 (2008).
85. Ximao Feng, Steve Gilbertson, Hiroki Mashiko, He Wang, Sabih D. Khan, Michael Chini, Yi Wu, Kun Zhao, and Zenghu Chang, "Generation of Isolated Attosecond Pulses with 20 to 28 Femtosecond Lasers," Physical Review Letters. 103. 183901 (2009).
86. S. Baker, I. A. Walmsley, J. W. G. Tisch, and J. P. Marangos, "Femtosecond to attosecond light pulses from a molecular modulator," Nat Photon. 5. 664-671 (2011).
87. S. T. Lin, Y. Y. Lin, R. Y. Tu, T. D. Wang, and Y. C. Huang, "Fiber-laser-pumped CW OPO for Red, Green, Blue Laser Generation," Optics Express. 18. 2361-2367 (2010).
88. Andrew M. Weiner, Ultrafast-Pulse Measurement Methods, in Ultrafast Optics2008, John Wiley & Sons, Inc. p. 92.
89. Chi-Kung Ni and A. H. Kung, "Pulsed amplification of cw dye laser with undetectable amplified spontaneous emission," Review of Scientific Instruments. 71. 3309-3312 (2000).
90. Chi-Kung Ni and A. H. Kung, "Amplified Spontaneous Emission Reduction by Use of Stimulated Brillouin Scattering: 2-ns Pulses from a Ti:Al2O3 Amplifier chain," Applied Optics. 37. 530-535 (1998).
91. S. E. Harris and A. V. Sokolov, "Subfemtosecond Pulse Generation by Molecular Modulation," Physical Review Letters. 81. 2894 (1998).
92. D. D. Yavuz, D. R. Walker, G. Y. Yin, and S. E. Harris, "Rotational Raman generation with near-unity conversion efficiency," Optics Letters. 27. 769-771 (2002).
93. K. Hakuta, M. Suzuki, M. Katsuragawa, and J. Z. Li, "Self-Induced Phase Matching in Parametric Anti-Stokes Stimulated Raman Scattering," Physical Review Letters. 79. 209 (1997).
94. J. Q. Liang, M. Katsuragawa, Fam Le Kien, and K. Hakuta, "Sideband Generation Using Strongly Driven Raman Coherence in Solid Hydrogen," Physical Review Letters. 85. 2474 (2000).
95. Fam Le Kien, J. Q. Liang, M. Katsuragawa, K. Ohtsuki, K. Hakuta, and A. V. Sokolov, "Subfemtosecond pulse generation with molecular coherence control in stimulated Raman scattering," Physical Review A. 60. 1562 (1999).
96. Fam Le Kien, K. Hakuta, and A. V. Sokolov, "Pulse compression by parametric beating with a prepared Raman coherence," Physical Review A. 66. 023813 (2002).