簡易檢索 / 詳目顯示

研究生: 黃元昌
論文名稱: 溶劑鑄模之研究
Research on Solvent Casting
指導教授: 劉大佼
口試委員: 李育德
汪上曉
盧詩磊
楊之光
學位類別: 博士
Doctor
系所名稱: 工學院 - 化學工程學系
Department of Chemical Engineering
論文出版年: 2013
畢業學年度: 101
語文別: 中文
論文頁數: 169
中文關鍵詞: 溶劑鑄膜牛頓流體非牛頓流體黏彈性
外文關鍵詞: Solvent Casting, Newtonian fluid, non-Newtonian fluid, viscoelasticity
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本論文是從流體力學、流變學與高分子結構觀點對於溶劑鑄膜之行為進行研究。實驗塗液包含牛頓流體與非牛頓流體;牛頓流體是採用甘油與玉米糖漿水溶液,黏度範圍是在110~10500mPa•s,研究鑄膜起始狀態、預潤濕、黏度與鑄膜間隙對於溶劑成膜之影響。在非牛頓流體將使用Polyacrylamide (PAA)伯格流體與簡稱Carboxymethyl cellulose (CMC)黏彈性流體進行研究,並以不同方式改變分子結構、黏度、彈性等了解其對於溶劑鑄膜對於獲得良好成膜區域,即操作視窗之影響。
    在甘油流體溶劑鑄膜研究中可發現操作窗外有不同的鑄膜缺陷如空氣滲入、不穩定水窪、抖邊。另外研究兩種不同起始方式對於溶劑鑄膜的影響。並研究最大鑄膜速度Vmax之影響,結果發現在模具與基材間的鑄膜間隙在600μm以下,Vmax可能隨著黏度增加而增加。但在鑄膜間隙在1000μm時Vmax會隨著黏度增加而上升。起最大鑄膜速度Vmax時之Capillary No. Camax(=μVmax/σ,μ為黏度、σ為表面張力)小於1時會產生不穩定水窪,Camax大於1則缺陷改變為空氣滲入。同時從流場觀測中塗佈液珠面積與動態接觸角證實Vmax與黏度之間關係,證明Vmax與兩者之間關係。
    玉米糖漿牛頓流體研究中,因為玉米糖漿之表面張力為72 mN/m 較甘油63 mN/m為高,因此Vmax與鑄膜視窗都高於甘油水溶液,且與甘油水溶液相同一樣有著局部最大Vmax現象。且Camax>1時鑄膜缺陷同為空氣滲入。
    非流頓流體研究結果中,發現具彈性之PAA流體可增加Vmax與鑄膜視窗,但增加效果會與Vmax時無因次群Camax與Weissenberg No. Wimax有關。若是Camax>1彈性效應可明顯抵銷黏滯力所帶來的負面效果,增加Vmax與鑄膜視窗,且隨著彈性與Wimax上升Vmax與鑄膜視窗將隨之減小。若是Camax≤1黏滯力較小情況下,彈性效應僅可小幅增加Vmax與鑄膜視窗。
    第二種非牛頓CMC黏彈性流體中,同樣發現上述Camax>1彈性可增加鑄膜視窗與Vmax現象。且CMC牽涉到剪切稀效應,因此與PAA相比將有更大的鑄膜視窗。且高分子結構的差異若是不會產生黏彈性、表面張力不同,對於鑄膜視窗將不會有影響,因此CMC每重複單元羥基被羧甲基取代之取代度(degree of substitution,DS)對於溶劑鑄膜無影響,但分子量大小確有明顯的差異。


    In this research, the effect of hydrodynamics, rheology and polymer structures on the solvent casting of Newtonian and non-Newtonian fluids have been investigated. The main focus of the present study is on the evaluation of the operating window, i.e., a region for stable and uniform processing. The experimental aqueous solutions were Newtonian fluids, such as glycerin and corn syrup with viscosities of 110~10500 mPa•s and Non-Newtionian fluids, such as polyacryamid (PAA) and carboxymethyl cellulose (CMC).
    Different types of defects, such as stable or unstable poolings, vibrating edges and air entrainment outside the operating windows were observed. The effects of two different start-up approaches on the operating window were studied. One of the key operating parameters is the maximum casting velocity Vmax for stable operation. The fluid viscosity is the most critical parameter on Vmax. It was found that if the gap between the slot die exit and the moving film substrate is smaller than 600μm, Vmax may go down and then go up as the fluid viscosity increases. On the other hand, if the gap is larger than 600μm, Vmax will decrease as the fluid viscosity increases. It found that casting defects of glycerin solutions were determined by critical maxium capillary number Camax(=μVmax/σ, Vmax is maxium casting speed, μ is viscosity, σ is surface tension). If Camax>1, the defect of casting is air entrainment, otherwise is unstable pooling. Competition of two different types of defects, i.e., unstable pooling and air entrainment can decide Vmax, as evidenced by the observation on the fluid motion and dynamic contact angles of different cases. The importance of different forces on Vmax was also analyzed.
    The surrface tension of corn syrup solution is 72 mN/m more than 63 mN/m of glycerin. According to other literatures, lower capillary number can improve the Vmax . We found the same result and critical Camax with glycerin solutions.
    We also investigated PAA of Boger fluids (elastic fluid with the constant viscosity) to understand the effect of elasticity on solvent casting process. It shows that the operating windows and Vmax of non-Newtonian solutions are higher than the Newtonian fluids. Especially, in high viscous force (Camax>1), the Vmax could raise significantly, because the elastic force offsets the viscous force. But higher elastic force will reduce the stability of coating beads.
    The CMC of viscoelastic fluids have shear thinning and elasticity to affect the solvent casting process. Because of shear thinning, the Vmax of CMC solutions are higher than PAA. However, there are similar critical capillary numbers as PAA solution. If Camax>1, the Vmax could increase greatly, and decrase as the fluid elasticity increase. We also studied on the effect of polymer structures such as difference degree of substitution (DS) and molecular weight.

    摘要 I Abstract III 目錄 VI 表目錄 VIII 圖目錄 IX 第一章 緒論 1 1-1 背景說明 1 1-2 高分子薄膜製程方式 1 1-3 預先計量式塗佈技術 3 1-4 研究方向 6 第二章 文獻回顧 12 2-1 狹縫式塗佈(slot die coating) 12 2-2 淋幕式塗佈(curtain coating) 16 2-3 溶劑鑄膜(solvent casting) 19 2-4 高分子結構與黏彈性 25 2-5 聚矽倍半氧烷之無機高分子 26 第三章 研究架構與實驗方法 38 3-1 研究架構 38 3-2 實驗藥品 40 3-3 分析儀器與實驗設備 42 3-4 實驗裝置 48 3-5 實驗步驟 49 第四章 牛頓流體之溶劑鑄膜 60 4-1 甘油水溶液之牛頓流體 60 4-1-1 基本物性與鑄膜缺陷 60 4-1-2 起始條件之影響 65 4-1-3 黏度效應與鑄膜間隙效應 67 4-1-4 鑄膜視窗比較 69 4-1-5 無因次群分析 70 4-1-6 預潤濕(pre-wetting)溶劑鑄膜之鑄膜視窗 72 4-2玉米糖漿水溶液之高黏度牛頓流體- 74 4-2-1 基本物性與鑄膜缺陷 74 4-2-2 黏度效應與鑄膜間隙效應 75 4-2-3 無因次群分析 77 第五章 非牛頓流體之溶劑鑄膜 105 5-1聚丙烯醯胺(PAA)伯格流體 105 5-1-1 PAA伯格流體配置與物性分析 105 5-1-2 PAA伯格流體溶劑鑄膜之缺陷 107 5-1-3 PAA伯格流體之彈性與黏度效應 107 5-1-4 PAA伯格流體之無因次分析 109 5-2羧甲基纖維素(CMC )黏彈性流體 111 5-2-1 CMC黏彈性流體配置與物性分析 111 5-2-2 CMC黏彈性流體溶劑鑄膜之鑄膜缺陷 113 5-2-3 CMC黏彈性流體高分子結構、黏彈性效應之溶劑鑄膜研究 114 5-2-4 CMC黏彈性流體之無因次分析 118 5-3高耐候無機高分子流體 120 5-3-1 無機高分子合成與物性 120 5-3-2 無機高分子黏彈性調整 122 5-3-3 無機高分子溶劑鑄膜研究 124 第六章 結論 158 第七章 參考文獻 162

    1. S. Middleman, “Fundamentals of polymer processing,” McGraw Hill: New York, 1977; Chapter 6 and 10.
    2. Z Tadmor, C. G. Gogos “Principles of polymer processing,” John Wiley & Sons: New Jersey, 2006; Chapter 12.
    3. 劉大佼,高分子加工原理與應用,國立編譯館,1996,第四、五、八章。
    4. 劉士榮,高分子加工,滄海書局,2010,第六章。
    5. U. Siemann, “Solvent cast technology,” Progr. Colloid. Polym. Sci., 130, 1-14, 2005.
    6. A. L. Beguin, “Method of coating strip material,” U.S. Patent 2,681,294, 1954.
    7. O.J. Romero, W.J. Suszynski, L.E. Scriven, M.S. Carvalho, “Low-flow limit in slot coating of dilute solutions of high molecular weight polymer,” J. Non-Newtonian Fluid Mech., 118, 137–156, 2004.
    8. T.A. Russell, “Method of multiple coating,” U.S. Patent 2,761,791, 1956.
    9. K. J. Ruschak, “Limiting flow in pre-metered coating device,” Chem. Eng. Sci. 31, 1057-1064, 1976.
    10. L.D. Landau, V.G. Levitch, “Dragging of a liquid by a moving plate,” Acta Physicochimi. U.R.S.S., 17, 42, 1942.
    11. B. G. Higgin and L. E. Scriven, “Capillary pressure and viscous pressure drop set bounds on coating bead operability,” Chem. Eng. Sci., 35, 673-682, 1980.
    12. W. Y. Lee, L.D. Liu and T. J. Liu, “Minimum wet thickness in extrusion slot coating,” Chem. Eng. Sci., 47, 1703-1713, 1992.
    13. H. M. Chang, C.-C. Lee, and T. J. Liu, “The effect of bead vacuum on slot die coating,” Inter. Polym. Proc., 24, 157-166, 2009
    14. M. S. Carvalho, H. S. Kheshgi, “Low-flow limit in slot coating: theory and experiments,” AIChE J., 46, 1907–1917, 2000.
    15. Y. R. Chang, H. M. Chang, C. F. Lin, T. J. Liu, P. Y. Wu, “Three minimum wet thickness regions of slot die coating,” J, Colloid and Inter. Sci., 308, 222–230, 2007.
    16. H. M. Chang, Y. R. Chang, C. F. Lin, T. J. Liu, “Comparison of certical and horizontal slot die coatings,” Polym. Eng. Sci., 47, 1927–1936, 2007
    17. Y. R. Chang, C. F. Lin, T. J. Liu, “Start-up of slot die coating,” Polym. Eng. Sci., 49, 1158–1167, 2009.
    18. W. J. Yu and T. J. Liu, “Reduction of the minimum wet thickness in extrusion slot coating,” Chem. Eng. Sci., 50, 917-920, 1995.
    19. O.J. Romero, L.E. Scriven, and M.S. Carvalho, “Slot coating of mildly viscoelastic liquids,” J. Non-Newtonian Fluid Mech., 138, 63-75, 2006.
    20. 高明清, ”高分子添加劑對雙層共擠壓式塗佈的影響“,國立清華大學化學工程研究所碩士論文,1997。
    21. 林庭瑜, ”高黏度塗液塗佈視窗之測定與分析”,國立清華大學化學工程研究所碩士論文,1999。
    22. 朱瑞蓮, “聚乙烯醇分子結構及濃度對狹縫式塗佈視窗之影響”,國立清華大學化學工程研究所碩士論文,1999。
    23. D.R. Brown, “A study of the behavior of thin sheet of moving liquid,” Journal of Fluid Mechanics, 10, 297-303, 1961.
    24. S.F. Kistler, and L.E. Scriven, “Coating flow theory by finite element and asymptotic analysis of the navier-stokes system,” International Journal for Numerical Methods in Fluids, 4, 207-229, 1984.
    25. D. R. Buonopane, E. B. Gutoff, and M. M. T. Rimore, “Effect of plunging tape surface properties on air entrainment velocity,” AIChE J., 32, 682-683, 1986.
    26. A. Clarke, “Coating on a rough surface,” AIChE J., 48, 2149–2156, 2002.
    27. T. D. Blake, A. Clarke, and K. J. Ruschak, “Hydrodynamic assist of dynamic wetting,” AIChE J., 40, 229-242, 1994.
    28. R. Burley, and B. S. Kennedy, “An experimental study of air entrainment at a solid/liquid/gas interface,” Chem. Eng. Sci., 31, 901-911, 1976.
    29. R. Burley, and R. P. S. Jolly, “Entrainment of air into liquids by a high speed continuous solid surface,” Chem. Eng. Sci., 39, 1357-1372, 1984.
    30. T. D. Blake, M. Bracke, and Y. D. Shikhmurzaev, “Experimental evidence of nonlocal hydrodynamic influence on the dynamic contact angle,” Phys. Fluids, 11, 1995-2007, 1999.
    31. T. D. Blake, R.A. Dobson, and K.J. Ruschak, “Wetting at high capillary numbers,” J. Colloid Int. Sci., 279, 198-205, 2004.
    32. M. Yamamura, H. Miura, and H. Kage, “Postponed air entrainment in dilute suspension coatings,” AIChE J., 51, 2171-2177, 2005.
    33. M. Yamamura, A. Matsunaga, Y. Mawatari, K. Adachi, and H. Kage, “Particle-assisted dynamic wetting in a suspension liquid jet impinged onto a moving solid at different flow rates” Chem. Eng. Sci., 61, 5421-5426, 2006
    34. 朱文彬,“含有機/無機粒子塗液於精密模具塗佈流動之分析”,國立清華大學化學工程研究所博士論文,2007。
    35. 章興國,“具有分散相的塗液在淋幕式塗佈之營為研究”, 國立清華大學化學工程研究所博士論文,2011。
    36. J. O. Marston, M. J. Simmons, S. P. Decent, and S. P. Kirk, “Influence of the flow field in curtain coating onto a prewet substrate,” Phys. Fluids, 18, 112102, 2006.
    37. D. Collins, “The story of Kodak.” HN Abrams Inc, New York, 1990.
    38. J. H. Steven, and M. C. Lefferts, “Apparatus for producing pyroxylin sheets,” U.S. Patent 573,928, 1896.
    39. E. Kinsella, “Producing of artificial materials and apparatus therefore,” U.S. Patent 2,085,532, 1937.
    40. J. S. Machell, J. Greener, and B. A. Contestable, “Optical properties of solvent-cast polymer films”, Macromolecule, 23, 186-194, 1990.
    41. J. Greener, H. Lei, J. Elman, and J. Chen, “Optical properties of solvent-cast polarizer films for liquid-crystal display: A viscoelastic modeling framework”, Jouranl of the Society for Information Display, 13, 835-839, 2005.
    42. T. Tsujimoto, ” Solvent casting process, polarizing plate protective film, optically functional film and polarizing plate,” U.S. Patent 2005/0110186, 2005.
    43. S. Sakamaki, ”Solution casting method,” WO Patent 2006/101186, 2006.
    44. I. Kojyu, and S. Satoshi, ” Solution casting method,” U.S. Patent 20080099954, 2008.
    45. S. Satoshi, “Solution casting method,” WO Patent 2006101186, 2006.
    46. H. Miyaji, “Polymer film and solution film forming method,” Japan Patent 2006-027263, 2006.
    47. H. Nakayama, N. Fukakagawa , Y. Nishiura, T. Yasuda, T. Ito, and K. Mihayashi, “Development of low-retardation tac film for protection films of lcd's polarizer,” Journal of Photopolymer Science and Technology, 19, 169-173. 2006.
    48. K. Akifumi, and Y. Hidekazu, “Apparatus for producing film and production method thereof,” Japan Patent 2007-090866, 2007.
    49. J. Higuchi, M. Kato, and Y. Suzuki, “Method for casting solution,” WO Patent 2006/095792, 2006.
    50. Y. Katai, “Solution casting method for producing film,” U.S. Patent 2005/0206033, 2005.
    51. F. Shogo, K. Nagayasu, and S. Masayoshi, “Method for manufacturing polyimide film and polyimide film,” Japan Patent 2010-077311, 2010.
    52. T. Asakura, M. Mizouchi, and H. Kobayashi, “Process for producing an aromatic polyimide film,” U.S. Patent 4,470,944, 1984.
    53. T. Hamamoto, H. Inoue, Y. Miwa, T. Hirano, K. Imatani, K. Matsubara, and T. Kohno,” Process for the preparation of aromatic polyimide film,” U.S. Patent 5,308,569, 1994.
    54. M. Okahashi, A. Tsukuda, T. Miwa, J.R. Edman, C. M. Paulson II, “Process for preparing biaxially stretched isotropic polyimide film,” U.S. Patent 5,324,475, 1994.
    55. U. Takeshi, I. Noboru, N. Toshiyuki, M. Eiji, and Y. Keiichi, “Method of producing polyimide film,” Japan Patent 2010-149494, 2010.
    56. K. Yabuta, and K. Akahori, “Process for preparing polyimide film,” U.S. Patent 6,746,639, 2004.
    57. S. Kiyoshi and M. Shinichi, ” Polyimide-based resin porous film or coating and method for producing the same,“ Japan Patent 2010-163498, 2010.
    58. H. Seiji, S. Masayoshi, U. Takashi, and K. Nagayasu, “Process of making polyimide film,” Japan Patent 2011-001439, 2011.
    59. G. P. Hungerford, “Manufacture of polyimide film by solvent casting,” U.S. Patent 4,405,550, 1993.
    60. R. S. Kohn, “Ultrathin polyimide polymer flims and their preparation,” U.S. Patent 4,929,405, 1990.
    61. A. Takeda, “Transparent polycarbonate film and method for producing transparent polycarbonate film,” Japan Patent 2009-286929, 2009.
    62. P. W. Law, A. Longdon, and G. G. Willins, “Solvent cast cellulose diacetate film,” Macromol.Symp., 208, 293-322, 2004.
    63. H. E. Knoop, and M. Howell, “Process for solvent casting a film,” U.S. Patent 4664859, 1987.
    64. N. Juergen, and U. Siemann, “Membranes made of cast polyarylate film,” WO Patent 2004003062, 2004.
    65. T. Nakamura, and Y. Katai, “Solution casting process”, U.S. patent 6,368,534, 2002.
    66. T. Arai, H. Yamazaki, and T. Tsujimoto, “Solvent casting proccess” U.S. Patent 2004/0027509, 2004.
    67. 蔡明志,”高黏度流體鑄膜之實驗分析”,國立清華大學化學工程研究所碩士論文,2009。
    68. 蔡志平,”高黏度流體鑄膜之分析”,國立清華大學化學工程研究所碩士論文,2011。
    69. T. Doborth and L. Erwin, “Causes of edge beads in cast film,” Polym. Eng. Sci., 26, 462-467, 1986.
    70. K. C. Tam, T. Moussa and C. Tiu, “Ideal elastic fluid of different viscosity and elasticity level,” Rheologica Acta., 28, 112-120, 1989.
    71. P. Dontula, C. W. Macosko, and L.E. Scriven, “Model elastic liquids with water-soluble polymers,” AIChE. J. 44, 1247–1255, 1998.
    72. J. Y. Lee, B. K. Ryu, J. S. Lee, H. W. Jung, and J. C. Hyun, “Dynamics and conformation of single polymer chain in a slot coating flow,” The XV International Congress on Rheology, 255–257, 2008.
    73. F. Snijkers, G. d'Avino, P.L. Maffettone, F. Greco, M.A. Hulsen, and J. Vermant, “Effect of viscoelasticity on the rotation of a sphere in shear flow,” J. non-Newtonian Fluid Mech., 166, 363-372, 2011.
    74. J. F. Brown, J. H.Vogt, A. Katchman, J. W. Eustance, K. M. Kiser, and K. W. Krantz, “Double chain polymers of phenylsilsesquioxane,” J. Am. Chem. Soc., 82, 6194-6195, 1960.
    75. T. Suminoe, Y. Matsumura, and O. Tomomitsu, “Polymer-compatible polymethylsilsesquioxane,“ U.S. Patent 5,907,019, 1985.
    76. Y. Matsumura, I. Nozue, O. Tomomitsu, T. Ukachi, and T. Suminoe, “Laddery lower alkylpolysilsesquioxane having heat-resistant thin film-formability and process for preparing same,” U.S. Patent 4,399,266, 1983.
    77. S. Fukuyama, Y. Yoneda, M. Miyagawa, K. Nishii, and A. Matsuura, “Process for preparation of polysilsesquioxane,” EP Patent 0406911, 1985.
    78. Y. Abe, H. Hatano, T. Gunji, Y. Nagao, and T. Misono, “Preparation and properties of flexible thin films by acid-catalyzed hydrolytic polycondensation of methyltrimethoxysilane,” J. Polym. Sci. Part A, Polym. Chem., 33, 751-754, 1995.
    79. N. Takamura, T.o Gunji, H. Hatano and Y. Abe, ”Preparation and properties of polysilsesquioxanes: Polysilsesquioxanes and flexible thin films by acid-catalyzed controlled hydrolytic polycondensation of methyl- and vinyltrimethoxysilane,” J. Polym. Sci.: Part A: Polym. Chem., 37, 1017-1026, 1999.
    80. T. Gunji, Y. Iizuka, K. Arimitsu and Y. Abe, “Preparation and properties of alkoxy(methyl)silsesquioxanes as coating agents,” J. Polym. Sci.: Part A: Polym. Chem., 42, 3676-3684, 2004.
    81. W. Xing, B. You, L. Wu, “Synthetic control of molecular weight and microstructure of processible poly(methylsilsesquioxane)s for low-dielectric thin film applications,” Polymer, 42, 9085-9089, 2001.
    82. Y. Kawakami, “Structural control and functionalization of oligomeric silsesquioxanes,” Reac. Func. Polym., 67, 1137-1147, 2007.
    83. E. Lee, and Y. Kimura, “Structural regularity of poly(phenylsilsesquioxane) prepared from thelow-molecular-weight hydrolysates of trichlorophenylsilane,” Polym. J., 30, 730-735, 1998.
    84. D. A. Loy, B. M. Baugher, C. R. Baugher, D. A. Schneider, and K. Rahimian, “Substituent effects on the sol−gel chemistry of organotrialkoxysilanes,” Chem. Mater., 2000, 12, 3624-3632.
    85. C. Ma, and Y. Kimura, “Preparation of nano-particles of poly(phenylsilsesquioxane)s by emulsion polycondensation of phenylsilanetriol formed in aqueous solution,” Polym. J. 34, 709-713, 2002.
    86. E. B. Gutoff and C. E. Kendrick. “Low flow limits of coatability on a slide coater,” AIChE Journal, 33, 141-5, 1987.
    87. 林庭瑜 ”高黏度塗液塗佈視窗之測定與分析 ” 國立清華大學化學工程研究所碩士論文,1999。
    88. C. F. Lin, D. S. H. Wong, T. J. Liu, and P. Y. Wu, “Operating windows of slot die coating: Comparison of theoretical predictions with experimental observations,” Adv. Polym. Tech. 29, 31-44, 2010.
    89. E. B. Gutoff, E. D. Cohen, A. S. Mujumdar, “Coating and drying defects: Troubleshooting operating problems,” Wiely: New York, 1995; Chapter 13.
    90. D.R. Arda, and M.R. Mackley, “The effect of die exit curvature, die surface roughness and a fluoropolymer additive on sharkskin extrusion instabilities in polyethylene processing,” J. Non-Newtonian Fluid Mech., 126, 47-61, 2005.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)
    全文公開日期 本全文未授權公開 (國家圖書館:臺灣博碩士論文系統)
    QR CODE