簡易檢索 / 詳目顯示

研究生: 張先鵬
Zhang, Xian Peng
論文名稱: 吸附原子石墨烯系統中能谷和自旋霍爾效應共存現象的研究
Coexistence of valley and spin Hall effects in graphene decorated with adatoms
指導教授: 米格爾
Miguel A. Cazalilla
口試委員: 郭瑞年
Kuo, Ray Nien
唐述中
Tang, Shu Jung
王道維
Wang, Daw Wei
學位類別: 碩士
Master
系所名稱: 理學院 - 物理學系
Department of Physics
論文出版年: 2016
畢業學年度: 104
語文別: 英文
論文頁數: 47
中文關鍵詞: 能谷霍爾效應自旋霍爾效應
外文關鍵詞: Valley Hall effect, Spin Hall effect
相關次數: 點閱:1下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 我們研究了石墨烯系統中任意分佈的吸附原子的電流響應。我們發現局部的吸附原子如果能誘導自旋軌道耦合并破壞子晶格反演對稱性的話,我們能觀測到能谷和自旋霍爾效應共存現象。我們構造了一個非常簡單的模型去研究這種共存現象,并解釋了最近實驗室上倍受爭議的非局域電信號的物理起源問題。


    We show that in the presence of random impurities that both break the sub-lattice inversion symmetry and induce spin orbit coupling, graphene can sustain both spin and valley currents. We develop a simple model to investigate the coexistence of the classical spin and valley Hall effects. Our results are relevant for the existing experimental controversy concerning the origin of the non-local signals observed in graphene devices decorated with various types of adsorbates.

    1 Introduction 1.1 Classical and quantum Hall Hall effect …………………………………………5 1.1.1 Classical Hall effect CHE) ……………………………………………………………………5 1.1.2 Quantum Hall effect (QHE) ………………………………………………………………………6 1.2 Classical and quantum spin Hall effects ………………………………………7 1.2.1 Classical spin Hall effect (CSHE) …………………………………………………7 1.2.2 Quantum spin Hall effects (QSHE) ……………………………………………………8 1.3 Quantum valley Hall effect (QVHE) ………………………………………………………9 1.4 Motivations for this work …………………………………………………………………………10 2 Physical model ……………………………………………………………………………………………………………14 2.1 Graphene model ………………………………………………………………………………………………………14 2.2 Extrinsic localized …………………………………………………………………………………………16 3 Scattering theory ……………………………………………………………………………………………………18 3.1 Lippmann-Schwinger equation ……………………………………………………………………18 3.2 T-matrix ………………………………………………………………………………………………………………………20 4 Semi-classical Boltzmann equation …………………………………………………………23 4.1 The classical valley Hall effect ………………………………………………………23 4.2 Coexistence of spin and valley Hall effects …………………………29 5 Quantum Boltzmann equation ……………………………………………………………………………34 5.1 Quantum Boltzmann equation ………………………………………………………………………34 5.1.1 Uniform quantum Boltamann equation ……………………………………………36 5.1.2 Non-uniform quantum Boltzmann equation …………………………………37 5.2 A model for the diffusion source ………………………………………………………38 5.3 Second-order approximation …………………………………………………………………40 5.4 Higher-order approximation ……………………………………………………………………42 6 Summary and conclusion ……………………………………………………………………………………47

    [1] A. H. C. Neto, F. Guinea, N. M. R. Peres, et al. The electronic properties of graphene. Reviews of modern physics, 81:109, 2009.
    [2] S. D. Sarma, S. Adam, E. H. Hwang, et al. Electronic transport in twodimensional graphene. Reviews of Modern Physics, 83:407, 2011.
    [3] N. M. R. Peres. Colloquium: The transport properties of graphene: An introduction. Reviews of Modern Physics, 82:2673, 2010.
    [4] E. H. Hall. On a new action of the magnet on electric currents. American Journal of Mathematics, 2:287, 1879.
    [5] P. Drude. Zur elektronentheorie der metalle. Annalen der Physik, 306:566, 1900.
    [6] P. Drude. Zur elektronentheorie der metalle; II. Teil. galvanomagnetische und thermomagnetische effecte. Annalen der Physik, 308:369, 1900.
    [7] C. Z. Chang, M. Li. Quantum Anomalous Hall Effect in Time-Reversal-Symmetry Breaking Topological Insulators. arXiv preprint arXiv:1510.01754, 2015.
    [8] K. von Klitzing. The quantized Hall effect. Reviews of Modern Physics, 58:519, 1986.
    [9] G. Landwehr. The discovery of the quantum Hall effect, Festkorperprobleme 26. Springer Berlin Heidelberg, 17, 1986.
    [10] M. I. Dyakonov, V. I. Perel. Current-induced spin orientation of electrons in semiconductors. Physics Letters A, 35:459, 1971.
    [11] J. H. Christenson. Possibility of orienting electron spins with current. Phys. Rev. Lett., 25:316, 1970.
    [12] Y. K. Kato, R. C. Myers, A. C. Gossard, et al. Observation of the spin Hall effect in semiconductors. science, 306:1910, 2004,.
    [13] J. Wunderlich, B. Kaestner, J. Sinova, et al. Experimental observation of the spin-Hall effect in a two-dimensional spin-orbit coupled semiconductor system. Physical review letters, 94:047204, 2005.
    [14] C. L. Kane and E. J. Mele, Quantum Spin Hall Effect in Graphene, Physical Review Letters, 95:226801, 2005.
    [15] B. A. Bernevig and S. C. Zhang, Quantum Spin Hall Effect, Physical Review Letters, 96:106802, 2006.
    [16] D. Xiao, M. C. Chang, and Q. Niu. Berry phase effects on electronic properties. Reviews of modern physics, 82:1959, 2010.
    [17] D. Xiao, et al. Coupled spin and valley physics in monolayers of MoS 2 and other group-VI dichalcogenides. Physical Review Letters, 108:196802, 2012.
    [18] M. Tahir, and Udo Schwingenschlogl. Valley polarized quantum Hall effect and topological insulator phase transitions in silicene. Scienti c reports 3, 2013.
    [19] M. Tahir, et al. Quantum spin/valley Hall effect and topological insulator phase transitions in silicene. Applied Physics Letters, 102:162412, 2013.
    [20] R. V. Gorbachev, et al. Detecting topological currents in graphene superlattices. Science, 346:448, 2014.
    [21] Sui, Mengqiao, et al. Gate-tunable topological valley transport in bilayer graphene. Nature Physics, 11:1027, 2015.
    [22] Shimazaki, Yuya, et al. Generation and detection of pure valley current by electrically induced Berry curvature in bilayer graphene. Nature Physics, 11:1032, 2015.
    [23] Guinea, F., M. I. Katsnelson, and A. K. Geim. Energy gaps and a zero-field quantum Hall effect in graphene by strain engineering. Nature Physics, 6:30-33, 2010.
    [24] J. Balakrishnan, et al. Colossal enhancement of spin-orbit coupling in weakly hydrogenated graphene. Nature Physics, 9:284, 2013.
    [25] A. A. Kaverzin, and B. J. van Wees. Electron transport nonlocality in monolayer graphene modified with hydrogen silsesquioxane polymerization. Physical Review B, 91:165412, 2015.
    [26] Wang, Yilin, et al. Neutral-current Hall effects in disordered graphene. Physical Review B, 92:161411, 2015.
    [27] Van Tuan, Dinh, et al. Revisiting Spin Hall Effect and Nonlocal Resistance in Chemically Functionalized Graphene. arXiv preprint arXiv:1603.03870, 2016.
    [28] Huang, Chunli, Y. D. Chong, and M. A. Cazalilla. Current-Induced Spin Polarization in Graphene from Extrinsic Mechanisms. arXiv preprint arXiv: 1603.08107, 2016.
    [29] A. Ferreira, et al. Extrinsic spin Hall effect induced by resonant skew scattering in graphene. Physical review letters, 112:066601, 2014.
    [30] Chunli Huang, Y. D. Chong, Giovanni Vignale, and M. A. Cazalilla, Graphene electrodynamics in the presence of the extrinsic spin Hall effect Phys. Rev. B, 93:165429, 2016.
    [31] H.-Y. Yang, Chunli Huang, H. Ochoa, and M. A. Cazalilla, Extrinsic spin Hall effect from anisotropic Rashba spin-orbit coupling in graphene. Phys. Rev. B, 93:085418, 2016.
    [32] D. Van Tuan, et al. Pseudospin-driven spin relaxation mechanism in graphene. Nature Physics, 10:857, 2014.
    [33] D. A. Abanin, et al. Nonlocal charge transport mediated by spin diffusion in the spin Hall effect regime. Physical review B, 79:035304, 2009.

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE