簡易檢索 / 詳目顯示

研究生: 梁庭瑜
Liang, Ting-Yu
論文名稱: 無光催化活性之氧化亞銅立方體經硫化銀沉積後變具有高催化活性
Photocatalytically Inactive Cu2O Cubes Become Highly Active after Ag2S Deposition
指導教授: 黃暄益
Huang, Hsuan-Yi
口試委員: 羅友杰
Lo, Yu-Chieh
徐雍鎣
Hsu, Yung-Jung
學位類別: 碩士
Master
系所名稱: 理學院 - 化學系
Department of Chemistry
論文出版年: 2020
畢業學年度: 108
語文別: 英文
論文頁數: 70
中文關鍵詞: 氧化亞銅硫化銀光催化
外文關鍵詞: cuprous oxide, silver sulfide, photodegradation
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 根據以往的氧化亞銅降解甲基橙的實驗,觀察到顯著的光催化晶面效應,氧化亞銅的立方體不具有光降解染料的能力,而菱形十二面體的氧化亞銅則具有最佳的活性表現,並且有修飾上金、氧化鋅、硫化鎘、硫化鋅與磷酸銀在立方體仍然保持無活性,我們認為氧化亞銅立方體{100}晶面表面具有高的能障,所以電子不容易傳遞到表面而沒有降解活性。當硫化銀沉積在氧化亞銅立方體上時,會使無活性的立方體變成具有高催化活性,在20分鐘內降解效率達到99%。加入電子與電洞捕捉劑後,甲基橙之降解活性都有受到抑制,代表電子與電洞能順利傳遞到表面進行染料降解。加入超氧化物與氫氧自由基捕捉劑後,亦活性受到抑制,表示在光降解過程裡兩者皆有參與其中。電化學阻抗量測也顯示經過硫化銀沉積後的氧化亞銅立方體,其電荷轉移電阻明顯變低。最後利用紫外光電子能譜以及反射式紫外-可見光光譜儀畫出三種晶面的氧化亞銅與硫化銀的能帶圖,當對準費米能階後,氧化亞銅的表面價帶往上彎曲靠近往下彎曲的硫化銀導帶,氧化亞銅的價帶上的電洞與硫化銀的導帶上的電子會傾向再結合,推測有效分開電子與電洞,因此降低了電子電洞對再結合效率可能是氧化亞銅立方體活性改變的原因。這例子展現氧化亞銅立方體接上某些半導體材料將有機會具有好的光催化活性。


    On the basis of previous facet-dependent photocatalytic performances of Cu2O in the photodegradation of methyl orange (MO), Cu2O cubes have been known to be photocatalytically inactive, while Cu2O rhombic dodecahedra (RD) are highly active and octahedra are moderately active. Besides, we have also shown that Cu2O cubes remain photocatalytically inactive after surface deposition with Au, ZnO, CdS, ZnS and Ag3PO4 nanostructures. Thus, it is believed that the {100} faces of Cu2O present as a large barrier, preventing photogenerated electrons from reaching to this surface to produce radical species. Surprisingly, when Ag2S particles are decorated on Cu2O cubes, they become highly active, degrading MO almost completely in 20 min. To confirm this observation, CrO3 and Na2C2O4 were added as electron and hole scavengers. Degradation of MO was significantly suppressed, indicating electrons and holes can migrate to the surface to degrade the dye. Adding 1,4-benzoquinone and isopropanol to capture superoxide anion radicals (·O2–) and hydroxyl radicals (·OH) also yields catalytic activity suppression, showing they are the active species responsible for MO photodegradation. Electrochemical impedance spectra (EIS) measurements indicate significantly reduced charge transfer resistance after Ag2S deposition. In addition, ultraviolet photoelectron spectra (UPS) and UV‒vis diffuse reflectance spectra were collected to obtain energy levels of Ag2S and different Cu2O crystals. An upward band bending of the Cu2O valence band (VB) is close to the downward band bending of Ag2S conduction band (CB) after aligning the Fermi level. The photogenerated electrons from the CB of Ag2S then recombine with the photogenerated holes from the VB of Cu2O. Because electrons and holes are separated efficiently, the reduction of the electron-hole pair recombination efficiency may give rise to activity of Cu2O cubes. This remarkable example demonstrates Cu2O cubes can show good photocatalytic activity with proper selection of the deposited semiconductor materials.

    論文摘要 I ABSTRACT II ACKNOWLEDGEMENT IV LIST OF CONTENTS V LIST OF FIGURES VII LIST OF SCHEMES XII LIST OF TABLES XIII 1. Introduction to Cu2O- and Ag2S-based photocatalysis 1 1.1 Cuprous oxide with specific facets 1 1.2 Facet–dependent properties 2 1.3 Photocatalytic mechanism of heterostructures 12 1.4 Facet-dependent photocatalytic properties of ZnO, CdS, ZnS, and Ag3PO4 deposition on polyhedral Cu2O crystals 17 1.5 Ag2S-based heterostructures 23 1.6 Ultraviolet photoelectron spectroscopy (UPS) 26 2. Demonstration of photocatalytic activities of Cu2O polyhedra after Ag2S deposition 28 3. Experimental Section 30 3.1 Chemical 30 3.2 Synthesis of Cu2O crystals 30 3.2 Synthesis of Ag2S‒Cu2Ocrystals 32 3.3 Facet-dependent photocatalytic activities of Ag2S‒Cu2O crystals 35 3.4 Active species trapping experiments 36 3.5 Electrochemical measurements 37 3.6 Instrumentation 38 4. Results and Discussion 40 4.1 Characterizations of Ag2S‒Cu2O heterostructures 40 4.2 Photodegradation of methyl orange by Ag2S-deposited Cu2O heterostructures 46 5. Conclusion 66 6. References 67

    1. Ho, J.-Y.; Huang, M. H. Synthesis of Submicrometer-Sized Cu2O Crystals with Morphological Evolution from Cubic to Hexapod Structures and Their Comparative Photocatalytic Activity. J. Phys. Chem. C 2009, 113, 14159‒14164.
    2. Huang, W. C.; Lyu, L. M.; Yang, Y. C.; Huang, M. H. Synthesis of Cu2O Nanocrystals from Cubic to Rhombic Dodecahedral Structures and Their Comparative Photocatalytic Activity. J. Am. Chem. Soc. 2012, 134, 1261‒1267.
    3. Tan, C. S.; Hsu, S. C.; Ke, W. H.; Chen, L. J.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Cu2O Crystals. Nano Lett. 2015, 15, 2155‒2160.
    4. Ke, W. H.; Hsia, C. F.; Chen, Y. J.; Huang, M. H. Synthesis of Ultrasmall Cu2O Nanocubes and Octahedra with Tunable Sizes for Facet-Dependent Optical Property Examination. Small 2016, 12, 3530‒3534.
    5. Chen, K.; Sun, C.; Xue, D. Morphology Engineering of High Performance Binary Oxide Electrodes. Phys. Chem. Chem. Phys. 2015, 17, 732‒750.
    6. Grozdanov, I. Electroless Chemical Deposition Technique for Cu2O Thin Films. Mater. Lett. 1994, 19, 281‒285.
    7. Xu, H.; Wang, W.; Zhu, W. Shape Evolution and Size-Controllable Synthesis of Cu2O Octahedra and Their Morphology-Dependent Photocatalytic Properties. J. Phys. Chem. B 2006, 110, 13829‒13834.
    8. McShane, C. M.; Siripala, W. P.; Choi, K.-S. Effect of Junction Morphology on the Performance of Polycrystalline Cu2O Homojunction Solar Cells. J. Phys. Chem. Lett. 2010, 1, 2666‒2670.
    9. Kwon, Y.; Soon, A.; Han, H.; Lee, H. Shape Effects of Cuprous Oxide Particles on Stability in Water and Photocatalytic Water Splitting. J. Mater. Chem. A 2015, 3, 156‒162.
    10. Bao, H.; Zhang, W.; Hua, Q.; Jiang, Z.; Yang, J.; Huang, W. Crystal-Plane-Controlled Surface Restructuring and Catalytic Performance of Oxide Nanocrystals. Angew. Chem. Int. Ed. 2011, 50, 12294‒12298.
    11. Wu, Y. A., et al. Facet-Dependent Active Sites of a Single Cu2O Particle Photocatalyst for Co2 Reduction to Methanol. Nat. Energy 2019, 4, 957‒968.
    12. Huang, M. H.; Naresh, G.; Chen, H. S. Facet-Dependent Electrical, Photocatalytic, and Optical Properties of Semiconductor Crystals and Their Implications for Applications. ACS Appl. Mater. Interfaces 2018, 10, 4‒15.
    13. Huang, M. H. Facet-Dependent Optical Properties of Semiconductor Nanocrystals. Small 2019, 15, 1804726.
    14. Tan, C. S.; Chen, Y. J.; Hsia, C. F.; Huang, M. H. Facet-Dependent Electrical Conductivity Properties of Silver Oxide Crystals. Chem. Asian J. 2017, 12, 293‒297.
    15. Hsieh, P. L.; Lee, A. T.; Chen, L. J.; Huang, M. H. Germanium Wafers Possessing Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2018, 57, 16162‒16165.
    16. Tan, C. S.; Hsieh, P. L.; Chen, L. J.; Huang, M. H. Silicon Wafers with Facet-Dependent Electrical Conductivity Properties. Angew. Chem. Int. Ed. 2017, 56, 15339‒15343.
    17. Hsieh, P.-L.; Wu, S.-H.; Liang, T.-Y.; Chen, L.-J.; Huang, M. H. Gaas Wafers Possessing Facet-Dependent Electrical Conductivity Properties. J. Mater. Chem. C 2020, 8, 5456‒5460.
    18. Tan, C. S.; Huang, M. H. Density Functional Theory Calculations Revealing Metal-Like Band Structures for Ultrathin Germanium (111) and (211) Surface Layers. Chem. Asian J. 2018, 1972‒1976.
    19. Yuan, G.-Z.; Hsia, C.-F.; Lin, Z.-W.; Chiang, C.; Chiang, Y.-W.; Huang, M. H. Highly Facet-Dependent Photocatalytic Properties of Cu2O Crystals Established through the Formation of Au-Decorated Cu2O Heterostructures. Eur. J. Chem. 2016, 22, 12548‒12556.
    20. Chen, Y.-J.; Chiang, Y.-W.; Huang, M. H. Synthesis of Diverse Ag2O Crystals and Their Facet-Dependent Photocatalytic Activity Examination. ACS Appl. Mater. Interfaces 2016, 8, 19672‒19679.
    21. Shang, Y.; Guo, L. Facet-Controlled Synthetic Strategy of Cu2O-Based Crystals for Catalysis and Sensing. Adv. Sci. 2015, 2, 1500140.
    22. Wang, G.; Ma, X.; Huang, B.; Cheng, H.; Wang, Z.; Zhan, J.; Qin, X.; Zhang, X.; Dai, Y. Controlled Synthesis of Ag2O Microcrystals with Facet-Dependent Photocatalytic Activities. J. Mater. Chem. 2012, 22, 21189‒21194.
    23. Marschall, R. Semiconductor Composites: Strategies for Enhancing Charge Carrier Separation to Improve Photocatalytic Activity. Adv. Funct. Mater. 2014, 24, 2421‒2440.
    24. Xu, Q.; Zhang, L.; Yu, J.; Wageh, S.; Al-Ghamdi, A. A.; Jaroniec, M. Direct Z-Scheme Photocatalysts: Principles, Synthesis, and Applications. Mater. Today 2018, 21, 1042‒1063.
    25. Wu, S.-C.; Tan, C.-S.; Huang, M. H. Strong Facet Effects on Interfacial Charge Transfer Revealed through the Examination of Photocatalytic Activities of Various Cu2
    O-ZnO Heterostructures. Adv. Funct. Mater. 2017, 27, 1604635.
    26. Huang, M. H.; Madasu, M. Facet-Dependent and Interfacial Plane-Related Photocatalytic Behaviors of Semiconductor Nanocrystals and Heterostructures. Nano Today 2019, 28, 100768.
    27. Huang, J.-Y.; Hsieh, P.-L.; Naresh, G.; Tsai, H.-Y.; Huang, M. H. Photocatalytic Activity Suppression of CdS Nanoparticle-Decorated Cu2O Octahedra and Rhombic Dodecahedra. The Journal of Physical Chemistry C 2018, 122, 12944‒12950.
    28. Naresh, G., Hsieh, P.-L.; Meena, V.; Lee, S.-K.; Chiu, Y.-H.; Madasu, M.; Lee, A.-T.; Tsai, H.-Y.; Lai, T.-H.; Hsu, Y.-J.; Lo, Y.-C.; Huang, M. H. Facet-Dependent Photocatalytic Behaviors of ZnS-Decorated Cu2O Polyhedra Arising from Tunable Interfacial Band Alignment. ACS Appl. Mater. Interfaces 2019, 11, 3582‒3589.
    29. Naresh, G.; Lee, A.-T.; Meena, V.; Satyanarayana, M.; Huang, M. H. Photocatalytic Activity Suppression of Ag3PO4-Deposited Cu2O Octahedra and Rhombic Dodecahedra. J. Phys. Chem. C 2019, 123, 2314‒2320.
    30. Zhang, H.; Wei, B.; Zhu, L.; Yu, J.; Sun, W.; Xu, L. Cation Exchange Synthesis of ZnS–Ag2S Microspheric Composites with Enhanced Photocatalytic Activity. Appl. Surf. Sci. 2013, 270, 133‒138.
    31. Yaping Du, B. X., Tao Fu, Miao Cai, Feng Li, Yan Zhang, and Qiangbin Wang* Near-Infrared Photoluminescent Ag2S Quantum Dots from a Single Source Precursor. J. Am. Chem. Soc. 2010, 132, 1470‒1471.
    32. Sadovnikov, S. I.; Gusev, A. I. Recent Progress in Nanostructured Silver Sulfide: From Synthesis and Nonstoichiometry to Properties. J. Mater. Chem. A 2017, 5, 17676‒17704.
    33. Xue, J.; Liu, J.; Liu, Y.; Li, H.; Wang, Y.; Sun, D.; Wang, W.; Huang, L.; Tang, J. Recent Advances in Synthetic Methods and Applications of Ag2S-Based Heterostructure Photocatalysts. J. Mater. Chem. C 2019, 7, 3988‒4003.
    34. Ong, W. L.; Lim, Y.-F.; Ting Ong, J. L.; Ho, G. W. Room Temperature Sequential Ionic Deposition (Sid) of Ag2S Nanoparticles on TiO2 Hierarchical Spheres for Enhanced Catalytic Efficiency. J. Mater. Chem. A 2015, 3, 6509‒6516.
    35. Wang, C.; Zhai, J.; Jiang, H.; Liu, D.; Zhang, L. CdS/Ag2S Nanocomposites Photocatalyst with Enhanced Visible Light Photocatalysis Activity. Solid State Sci. 2019, 98, 106020.
    36. Shen, S.; Guo, L.; Chen, X.; Ren, F.; Mao, S. S. Effect of Ag2S on Solar-Driven Photocatalytic Hydrogen Evolution of Nanostructured CdS. Int. J. Hydrogen Energy 2010, 35, 7110‒7115.
    37. Chen, C.; Li, Z.; Lin, H.; Wang, G.; Liao, J.; Li, M.; Lv, S.; Li, W. Enhanced Visible Light Photocatalytic Performance of ZnO Nanowires Integrated with CdS and Ag2S. Dalton Trans. 2016, 45, 3750‒3758.
    38. Li, X.; Liu, D.; Shi, Z.; Yang, J. Effect of Ag2S Shell Thickness on the Photocatalytic Properties of ZnO/Ag2S Core–Shell Nanorod Arrays. J. Mater. Sci. 2018, 54, 1226‒1235.
    39. Bai, S.; Jiang, J.; Zhang, Q.; Xiong, Y. Steering Charge Kinetics in Photocatalysis: Intersection of Materials Syntheses, Characterization Techniques and Theoretical Simulations. Chem. Soc. Rev. 2015, 44, 2893‒2939.
    40. Saha, A.; Moya, A.; Kahnt, A.; Iglesias, D.; Marchesan, S.; Wannemacher, R.; Prato, M.; Vilatela, J. J.; Guldi, D. M. Interfacial Charge Transfer in Functionalized Multi-Walled Carbon Nanotube@TiO2 Nanofibres. Nanoscale 2017, 9, 7911‒7921.
    41. Huang, C.-Y. C. a. M. H. Facet-Dependent Photocatalytic Properties of Cu2O Crystals Probed by Using Electron, Hole and Radical Scavengers. J. Mater. Chem. A 2017, 5, 15116‒15123.
    42. Tahir, D.; Tougaard, S. Electronic and Optical Properties of Cu, Cuo and Cu2O Studied by Electron Spectroscopy. J Phys Condens Matter 2012, 24, 175002.
    43. Liu, J.; Jing, L.; Gao, G.; Xu, Y.; Xie, M.; Huang, L.; Ji, H.; Xie, J.; Li, H. Ag2S Quantum Dots in Situ Coupled to Hexagonal SnS2 with Enhanced Photocatalytic Activity for Mo and Cr(VI) Removal. RSC Adv. 2017, 7, 46823‒46831.
    44. Peng, X.; Liu, J.; Li, B.; Guan, G.; Zhang, W.; Huang, X.; Chen, Y.; Zou, R.; Lu, X.; Hu, J. Janus Ag/Ag2S Beads as Efficient Photothermal Agents for the Eradication of Inflammation and Artery Stenosis. Nanoscale 2019, 11, 20324‒20332.
    45. Jiang, W.; Wu, Z.; Yue, X.; Yuan, S.; Lu, H.; Liang, B. Photocatalytic Performance of Ag2S under Irradiation with Visible and near-Infrared Light and Its Mechanism of Degradation. RSC Adv. 2015, 5, 24064‒24071.
    46. Chava, R. K.; Kang, M. Ag2S Quantum Dot Sensitized Zinc Oxide Photoanodes for Environment Friendly Photovoltaic Devices. Mater. Lett. 2017, 199, 188‒191.

    QR CODE