簡易檢索 / 詳目顯示

研究生: 何羽婷
Ho, Yu Ting
論文名稱: 真空中熱壓製作TiNi記憶合金薄片
A Possibility Study of Fabricating TiNi SMA Foils with the Vacuum Hot-Pressing Process
指導教授: 胡塵滌
Hu, Chen-Ti
口試委員: 呂正傑
Leu, Ching-Chich
顏大任
Yen, Ta Jen
胡塵滌
Hu, Chen-Ti
學位類別: 碩士
Master
系所名稱: 工學院 - 材料科學工程學系
Materials Science and Engineering
論文出版年: 2016
畢業學年度: 104
語文別: 中文
論文頁數: 125
中文關鍵詞: 鈦鎳形狀記憶合金擴散熱處理
外文關鍵詞: TiNI shape memory alloy, diffusing heat treatment
相關次數: 點閱:2下載:0
分享至:
查詢本校圖書館目錄 查詢臺灣博碩士論文知識加值系統 勘誤回報
  • 本研究屬於製程開發,目標是要在真空中施壓於鎳/鈦/鎳三明治狀疊合箔片同時進行熱處理,以不同熱處理條件研究反應過程,最終預期可以製作出TiNi記憶合金薄片成品,可以避免TiNi合金鑄錠輥壓製作薄片成品製程中加工硬化速率高的困難。研究工作主要分為四部分:
    第一部分將本實驗室前期學姐原採用鈦/鎳/鈦三明治狀疊合順序之試片改變為鎳/鈦/鎳順序之試片,從熱處理後試片之OM金相觀察,試片的兩側面皆不再殘留有304SS襯料。證實試片之疊合順序採取鎳/鈦/鎳後能有效改善襯料焊合難以剝除分離的問題。
    第二部分將鎳箔片先在熱處理製程前進行冷滾壓,造成鎳箔片內部具有各種高濃度缺陷,比較後發現試片[1373K/0.5min-C+L]之TiNi相厚度較試片[1373K/0.5min-A+L]中TiNi相厚度為薄,證實鎳箔片中的缺陷不能幫助鎳原子擴散進入鈦層中。對於鈦原子擴散進入鎳層方面,由兩試片中原鈦/鎳界面上TiNi3層厚度比較發現試片[1373K/0.5min-C+L]中TiNi3厚度較為厚,證實鎳箔片內部缺陷可以幫助鈦原子擴散進入鎳層中,雖然TiNi3相形成位置為原鈦/鎳界面。
    第三部份比較試片在真空中加熱(1373 K)時間的長(4分鐘)或短(0.5分鐘)之效應。發現鎳原子進入鈦層首先快速將所有鈦反應形成Ti2Ni相(少於0.5分鐘);更多鎳原子進入鈦層後,近等原子比的TiNi相藉由非均勻成核自鈦/鎳層界面向試片內側成長。熱處理時間較短時可以觀察到殘餘Ti2Ni相位在兩側TiNi相區的中央,熱處理時間較長時殘餘Ti2Ni相逐漸完全形成TiNi相,更多的鎳原子進入後會在TiNi相中以均勻成核方式形成針狀(Script)的新相(可能為TiNi3相)。
    第四部份是形狀記憶效應測試,各種熱處理條件中以試片[1373K/0.5min-A+L]和[1373K/1.5min-A+XL]形狀記憶效應為最佳。試片[1373K/0.5min-A+L]的TiNi相體積百分比為所有試片中最大;而大面積試片[1373K/1.5min-A+XL]因為已完全剝除一側面之鎳層,在缺少一面鎳層拘束下而呈現較好的形狀記憶效果,且該試片經過十次升降溫測試後的形狀記憶效應反而提升,經過五十次測試後仍維持著良好的形狀記憶效果。


    The aim of present study is developing a new and simple process to fabricate the TiNi shape memory alloy thin plate by hot pressing the sandwich-stacked Ni/Ti/Ni thin foils under a good vacuum condition.
    The effects of following various hot pressing conditions are examined and discussed in this report : 1. Change stacking sequence of Ni and Ti foils; 2. Employing cold rolled Ni foils; 3. Change external loading forces in hot pressing; 4. Varied length of time in hot pressing process under a fixed temperature; 5. Very large size specimens.
    The OM(Optical Microscope), SEM(Scanning Electron Microscope), EDS(Energy Dispersive Spectrometer), DSC(Differential Scanning Calorimetry), and the shape recovery behavior studies were conducted on various hot pressed Ni/Ti/Ni stacked specimens to investigate the microstructural changes, phase constituents, physic properties and shape memory property. Results of present study indicate the good shape memory behaviors could be observed from the specimens fabricated by hot pressed Ni/Ti/Ni stacked foils.

    第 1 章 緒論 1 1-1 前言 1 1-2 研究目的 2 第 2 章 文獻回顧 3 2-1 形狀記憶合金簡介 3 2-2 形狀記憶特性 5 2-2-1 形狀記憶效應 6 2-3 超(擬)彈性 10 2-4 鈦鎳系形狀記憶合金 13 2-5 鈦鎳記憶合金製程 17 2-5-1 熔煉製程(Melting Metallurgy Processes) 17 2-5-2 粉末冶金製程 17 2-5-3 固態合成法(Solid Synthesis method) 21 2-6 X光之穿透深度(74) 29 第 3 章 實驗步驟與儀器設備 32 3-1 實驗步驟 33 3-2 試片製備 34 3-3 結構分析及觀察 39 3-3-1 X-ray 繞射分析 (X-ray Diffraction, XRD) 39 3-3-2 光學顯微鏡 (Optical Microscope, OM)觀察 40 3-3-3 掃描式電子顯微鏡 (Scanning Electron Microscope, SEM)觀察 40 3-4 成分分析 41 3-4-1 能量散佈分析儀 (Energy Dispersive Spectrometer, EDS) 41 3-5 形狀記憶效應測試 (Shpae Memory Effect, SME) 42 3-6 熱示差掃瞄卡量計之測量(Differential Scanning Calorimetry, DSC) 43 第 4 章 結果與討論 44 4-1 試片代號介紹 44 4-2 研究目的 44 4-3 研究結果 46 4-3-1 改變三明治狀疊合順序 46 4-3-2 改變冷加工條件 48 4-3-3 改變外加應力條件 63 4-3-4 改變加熱時間效應 70 4-3-5 大面積(約30 cm × 10 cm)製程之試片 85 4-4 形狀記憶效應量測 94 4-5 鎳在鈦區域及鈦在鎳區域的擴散速率之影響 101 4-6 接合之可能性研究 103 第 5 章 結論 113 第 6 章 參考文獻 114 附錄 122 附錄A 鈦鎳合金試片B3之微硬度測試 122

    (1) L. Delaey, R. Krishnan, H. Tas, and H. Warlimont., “Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 1 Structural and microstructural changes associated with the transformations,” Journal of Materials Science (1974), vol.9, pp. 1521-1535
    (2) R. Krishnan, L. Delaey, H. Tas, and H. Warlimont,“Thermoplasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 2 Macroscopic Mechanical-Behavior,” Journal of Materials Science (1974), vol.9, pp. 1536-1544.
    (3) H. Warlimont, L. Delaey, R. Krishnan, and H. Tas,“Thermoelasticity, pseudoelasticity and the memory effects associated with martensitic transformations. Part 3 Thermodynamics and Kinetics,” Journal of Materials Science (1974), vol.9, pp. 1545-1555.
    (4) 賴耿陽,“形狀記憶合金” 復漢出版社, Vol. 1, pp. 1-44, p.68 (1999)
    (5) J. Perkins and R.O. Sponholz, “Stress-Induced Martensitic Transformation Cycling and Two-Way Shape Memory Training in Cu-Zn-AI Alloys” Metallurgical Transactions (1984), vol.15, pp. 313-321
    (6) D. Dumme and C. Wayman,“Effect of Austenite Ordering on Martensite Transformation in Fe-Pd Alloys Near Composition Fe3. 2. Crystallography and General Features,” Metallurgical Transactions (1973), vol.4, pp. 147-152.
    (7) T. Schroeder and C. Wayman,“The two-way shape memory effect and other training phenomena in Cu- Zn single-crystals,” Scripta Metallurgica (1977), vol.11, pp. 225-230.
    (8) Lahoz, R., L. Gracia-Villa, and J.A. Puertolas, “Training of the two-way shape memory effect by bending in NiTi alloys.” Journal of Engineering Materials and Technology-Transactions of the Asme, (2002), Vol.124, No.4, pp. 397-401.
    (9) M. Nishida, T. Honma, “All-round shape memory effect in Ni-rich TiNi alloys generated by constrained aging.” Scripta Metallurgica (1984), vol.18, pp. 1293–1298
    (10) Nishida, M. and T. Honma, “Effect of Heat-Treatment on the All-Round Shape Memory Effect in Ti-51at Percent Ni.” Scripta Metallurgica,(1984), Vol.18 No.11, pp. 1299-1302
    (11) Honma, T., Proc. Int. Conf. on Martensitic Transformations (ICOMAT-86), (1987) p. 709.
    (12) Otsuka, K., in: Proc. Int’l. Conf. on Solid to Solid Phase Transformations, TMS-AIME Pittsburgh, PA. (USA), (1981), p. 1276.
    (13) Otsuka, K. and K. Shimizu, “Pseudoelasticity”, Metals Forum, (1981). Vol.4, No.3, pp. 142-152.
    (14) Otsuka, K. and a.C.M. Wayman, “Reviews on the Deformation Behavior of Materials”, (P. Feltham ed.), Israel, (1977), p. 81.
    (15) Wayman, C.M., Proc. ICOMAT-89,Sydney, Australia, (1989), p. 519
    (16) K. Otsuka and K.Shimizu, International Metals Reviews.,Vol.31, (1986), p. 93
    (17) Vol.3 “Alloy Phase Diagrams” ASM Handbook, ASM international.
    (18) C.M. Jackson, H.J. Wanger, and R.J. Wasilewski, “55-NITIONL Report”. NASA-SP5110, (1972).
    (19) K. Ostuka, S. Sawamura, and a.K. Shimizu, Phys. Stat. Sol., 5, (1971), p. 457.
    (20) Lahoz, R., L. Gracia-Villa, and J.A. Puertolas, “Training of the two-way shape memory effect by bending in NiTi alloys”, Journal of Engineering Materials and Technology-Transactions of the Asme, (2002).Vol.124, No.4, pp. 397-401.
    (21) Liu, Y., et al., “Effect of texture orientation on the martensite deformation of NiTi shape memory alloy sheet.”, Acta materialia, (1999). Vol.47, No.2, pp. 645-660.
    (22) Liu, Y.O. and P.G. Mccormick, “Factors Influencing the Development of 2-Way Shape Memory in NiTi.”, Acta Metallurgica Et Materialia, (1990). Vol.38, No.7, pp. 1321-1326.
    (23) Wang, Z.G., et al., “Design of TiNi alloy two-way shape memory coil extension spring.”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, (2003). Vol.345,(1-2), pp. 249-254.
    (24) Prader, P. and A.C. Kneissl, “Deformation behaviour and two-way shape memory effect of NiTi alloys.”, Zeitschrift Fur Metallkunde, (1997). Vol.88, No.5, pp. 410-415.
    (25) Scherngell, H. and A.C. Kneissl, Generation, development and degradation of the intrinsic two-way shape memory effect in different alloy systems. Acta Materialia, 2002. Vol.50, No.2, pp. 327-341.
    (26) Scherngell, H. and A.C. Kneissl, “Influence of the microstructure on the stability of the intrinsic two-way shape memory effect.”, Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, (1999). Vol.273, pp. 400-403.
    (27) Hebda, D.A. and S.R. White, “Effect of training conditions and extended thermal cycling on nitinol two-way shape memory behavior.”, Smart Materials & Structures, (1995). Vol.4, No.4, pp. 298-304.
    (28) Perkins, J. and R.O. Sponholz, “Stress-Induced Martensitic-Transformation Cycling and 2-Way Shape Memory Training in Cu-Zn-Al Alloys.”, Metallurgical Transactions a-Physical Metallurgy and Materials Science, (1984). Vol.15, No.2, pp. 313-321.
    (29) Schroeder, T.A. and C.M. Wayman, “2-Way Shape Memory Effect and Other Training Phenomena in Cu-Zn Single-Crystals.”, Scripta Metallurgica, (1977). Vol.11, No.3, pp. 225-230.
    (30) M.M. Reyhani, P.G.M., Proc. ICO-MAT-86, Japan Inst. Metals (1986), p. 896.
    (31) N. Igata, N. Urahashi, M. Sasaki, Y. Kogo, “Internal friction of Ni–Ti and Ni–Ti–Cu plates produced by lamination process”, Materials Science and Engineering A, (2004), Vol.379, pp. 560–563
    (32) M. Matsumoto and T. Honma, Proc. First JIM Inst. Symp. on New Aspects of Martensitic Transformation, Japan Institute of Metals, Sendai (1976). p. 199.
    (33) V.N. Khachin, et al., Phys. Met. Metallogr. (Engl. Trans.), Vol. 46, (1978), p. 49.
    (34) Sandrock, G.D., A.J. Perkins, and R.F. Hehemann, “Premartensitic Instability in near-Equiatomic TiNi”, Metallurgical Transactions, (1971), Vol.2, p. 2769
    (35) Wang, F.E., et al., “Irreversible Critical Range in TiNi Transition”, Journal of Applied Physics, (1968), Vol.39, p. 2166
    (36) Melton, K.N. and O. Mercier, “Fatigue of Niti Thermoelastic Martensites”, Acta Metallurgica, Vol.27, (1979), pp. 137-144.
    (37) Wang, F.E., W.J. Buehler, and S.J. Pickart, “Crystal Structure and a Unique Martensitic Transition of TiNi”, Journal of Applied Physics, Vol.36, No.10, (1965), p. 3232
    (38) Ling, H.C. and R. Kaplow, “Stress-Induced Shape Changes and Shape Memory in the R and Martensite Transformations in Equiatomic NiTi”, Metallurgical Transactions a-Physical Metallurgy and Materials Science, Vol.12, No.12, (1981), pp. 2101-2111.
    (39) Hwang, C., et al., “Transformation behaviour of a Ti50Ni47Fe3 alloy I. Premartensitic phenomena and the incommensurate phase”. Philosophical Magazine A, Vol.47, (1983), pp. 9-30.
    (40) Salamon, M.B., M.E. Meichle, and C.M. Wayman, “Premartensitic Phases of Ti50Ni47Fe3”, Physical Review B, Vol. 31, No.11, (1985), pp. 7306-7315.
    (41) Dautovic.Dp, et al., “Calorimetric Study of a Diffusionless Phase Transition in TiNi”, Journal of Applied Physics, (1966), Vol.37, No.6, p. 2513
    (42) G.D. Sandrock, A.J. Perkins, and R.F. Hehemann, Metall. Trans., vol.2 (1971), p2769
    (43) G.M. Michal, P. Moine, and R. Sinclair, Acta Metall., vol.30, (1982), p125
    (44) Sato, M., A. Ishida, and S. Miyazaki, “Two-way shape memory effect of sputter-deposited thin films of Ti 51.3 at% Ni”, Thin Solid Films, Vol.315,No.1-2, (1998). pp. 305-309.
    (45) Redeker, T., et al., “Organometallic chemical vapor deposition (OMCVD) of thin films of titanium/nickel alloys (TiNi)”, Abstracts of Papers of the American Chemical Society, Vol.216, (1998), p.188
    (46) Hanlon, J.E., S.R. Butler, and Wasilews.Rj, “Effect of Martensitic Transformation on Electrical and Magnetic Properties of NiTi”, Transactions of the Metallurgical Society of Aime, (1967), Vol.239, No.9, p.1323
    (47) Saburi, T., T. Tatsumi, and S. Nenno, “Effects of Heat-Treatment on Mechanical-Behavior of Ti-Ni Alloys”, Journal De Physique, (1982).Vol.43, pp. 261-266.
    (48) Airoldi, G., G. Bellini, and C. Difrancesco, “Transformation Cycling in Niti Alloys”, Journal of Physics F-Metal Physics, (1984), Vol.14, No.8, pp.1983-1987.
    (49) Tadaki, T., Y. Nakata, and K. Shimizu, “Thermal Cycling Effects in an Aged Ni-Rich Ti-Ni Shape Memory Alloy”, Transactions of the Japan Institute of Metals, (1987), Vol.28, No.11, pp. 883-890.
    (50) Miyazaki, S., Y. Igo, and K. Otsuka, “Effect of Thermal Cycling on the Transformation Temperatures of Ti-Ni Alloys”, Acta Metallurgica, (1986), Vol.34, No.10, pp. 2045-2051.
    (51) Sakae Saito, Takashi Wachi and Shuji Hanada,” A new fabrication process of TiNi shape memory wire” Material Science Engineering A, Vol.161, (1993), pp.91-96
    (52) D. Tomus, K. Tsuchiya, M. Inuzuka, M. Sasaki, D. Imai, T. Ohmori, M. Umemoto, “Fabrication of shape memory TiNi foils via Ti/Ni ultrafine laminates”, Scripta Materialia, Vol. 48, (2003), pp. 489–494
    (53) Hong-Sheng Ding, Jung-Moo Lee,, Bup-Ro Lee, Suk-Bong Kang, Tae-Hyun Nam, “Processing and microstructure of TiNi SMA strips prepared by cold roll-bonding and annealing of multilayer”, Materials Science and Engineering A. vol. 408 (2005), pp. 182–189
    (54) Pavel Novák, Lucie Mejzlíková, Alena Michalcová, Jaroslav Capek, Premysl Beran, Dalibor Vojtech, “Effect of SHS conditions on microstructure of NiTi shape memory alloy”, Intermetallics, Vol.42, (2013), pp. 85-91
    (55) 馬濟民,鈦鑄錠和鍛造,冶金工業出版社 ,2012。
    (56) Pavel Novak, Petr Pokorný, Vladimír Vojtech, Anna Knaislova, Andrea Skolakova, Jaroslav Capek, Miroslav Karlík, Jaromír Kopecek, “Formation of NiTi intermetallics during reactive sintering at 500-650°C”, Materials Chemistry and Physics, Vol.155, (2015), pp.113-121
    (57) 張小明, 殷為宏, 郭繼紅, 粉末冶金技術,13(2), (1995), p. 121
    (58) Zuhair A. Munir, Umberto Anselmi-Tamburini,” Self-propagating exothermic reactions:The synthesis of high-temperature materials by combustion” Material Science Report., Vol.3, (1989), pp. 277-365
    (59) Hitoshi Matsumoto, Ken-Ichi Kondo, Shoso Dohi and Akira sawaoka, “Shock compaction of NiTi alloy powder”, Journal of Material Science, Vol.22, (1987), pp.581-586
    (60) V. I. Itin, V. E. Gjunter, S. A. Shabalovskays, R. L. C. Sachdeva, “Mechanical Properties and Shape Memory of Porous Nitinol”, Materials Characterization, Vol. 32, (1994), pp. 179–187
    (61) Binh-Yun LI, Li-Jian Rong, Yi-Yi LI, and V.E. Gjunter, “An Investigation of the Synthesis of Ti-50 At. Pct Ni Alloys through Combustion Synthesis and Conventional Powder Sintering”, Metallurgical and Materials Transactions A, Vol.31, (1998), pp. 1867-1871
    (62) M. Igharo, J. V. Wood,” Properties of Equiatomic TiNi Alloy Produced by Rapid Solidification”, Materials Science and Engineering, (1988), Vol.98, pp. 443-447
    (63) W. C. Chiou and C. T. Hu, “A simple method for producing fully dense Ni3Al by reactive sintering”, Scripta Metallurgica et Materialia, Vol.31, No.9, (1994), pp. 1215-1220
    (64) M. Igharo and J. V. Wood, ”Compaction and Sintering Phenomena in Titanium—Nickel Shape Memory Alloys” Powder Metallurgy, Vol.28, No.3 (1985), p.131
    (65) Handbook of Chemistry and Physics 58th edition
    (66) Hideo Nakajima, Sadamichi Maekawa, Yoshihira Aoki and Masahiro Koiwa, “Diffusion of Nickel in Titanium in a Magnetic Field” Transactions of the Japan Institute of Metals, Vol. 26, No. 1 (1985), pp.1-6
    (67) K. Otsuka, C. Wayman, “Shape Memory Materials”, Cambridge University Press, Cambridge, (1998), p. 49.
    (68) P. Thamburaja, H. Pan, F.S. Chau., “Martensitic reorientation and shape-memory effect in initially textured polycrystalline Ti–Ni sheet.” Acta Materialia Vol.53, (2005) pp. 3821–3831
    (69) T. C. Li, Y. B. Qui, J. T. Liu, F. T. Wang, M. Zhu, D. Z. Yang, J. Material Science. vol. 11, (1992), p. 845
    (70) M. Bram, A. Ahmad-Khanlou, A. Heckmann, B. Fuchs, H.P. Buchkremer, D. Sto¨ver, “Powder metallurgical fabrication processes for NiTi shape memory alloy parts”, Materials Science and Engineering A, vol. 337, (2002), pp. 254-263
    (71) Ling, H.C. and R. Kaplow, “Phase-Transitions and Shape Memory in NiTi”., Metallurgical Transactions a-Physical Metallurgy and Materials Science, (1980). Vol.11, pp. 77-83.
    (72) Handbook of Chemistry and Physics 58th edition
    (73) Hideo Nakajima, Sadamichi Maekawa, Yoshihira Aoki and Masahiro Koiwa, “Diffusion of Nickel in Titanium in a Magnetic Field” Transactions of the Japan Institute of Metals, Vol. 26, No. 1 (1985), pp.1 to 6
    (74) 許樹恩,吳泰伯,“X光繞射原理與材料結構分析” 中國材料科學學會, Vol. 4, pp. 136-138 (2006)

    無法下載圖示 全文公開日期 本全文未授權公開 (校內網路)
    全文公開日期 本全文未授權公開 (校外網路)

    QR CODE